Motivations and Objectives

Web2.0 and Social Media are becoming crucial in tourism destination online promotion. Within this scenario, user generated pictures are gaining more and more importance, as:

- they informally represent and describe destinations;
- they bring a lot of related information that could be exploited to better describe places.

This information is mainly provided through:

- geotagging: the process of (explicitly or implicitly) annotating objects and online resources with geospatial context information, typically embedded within picture metadata (stored in EXIF format);
- tagging: assigning short strings of text to an individual piece of content in order to classify it for easier retrieval. The collection of terms assigned by all users to all the resources in a system is called folksonomy.

1) Cities as bags of tags

- given a set (S) of geolocated photos, a destination d according to a threshold ε, a set of tags can be retrieved;
- represent every destination as a vector \(v_d=(v_{d1}, v_{d2}, \ldots, v_{do})\), where \(o\) is the tag vocabulary size and every component in \(v_d\) is assigned the weighted frequency of its matching tag

2) Data collection and cleaning

233 top tourism destinations according to Euromonitor International (http://tinyurl.com/top150dest) have been considered. After a desambiguation phase, cities are matched to their unique WOEIDs which are then passed to Yahoo APIs for tag retrieval:

![Flickr home page](image1)

Top 1000 frequent tags have been analyzed (see Figure 2) and unrelavant tags have been removed. Two datasets have been generated:

- Top100 (only top 100 tags for each city, vocabulary size 9700 tags)
- Random (tag, user, and photo-related info, 10 photos/day for 300 random days, vocabulary size 50000 tags)

3) Weighting

Tag frequencies are normalized by using three different weighting factors:

- classical IDF (calculated on Destination),
- IDFP (taking Pictures into account), and
- IDFU (considering both Pictures and Users)

\[
IDF_i = \log \left(\frac{|D|}{|P_i|} \right) \quad \text{IDFP}_i = \frac{|P_i|}{|P|} \quad \text{IDFU}_i = \frac{|P_i|}{|P|} \cdot \frac{|U_i|}{|U|} \cdot \frac{|D|}{|D|}
\]

4) Recommending

Four different systems:

![Prototype of Placey](image2)

- System A ranks second, showing that we can still extract valuable information from the smaller Top100 dataset (compare with B, which only differs for the dataset).
- Objective: build a representative description for a destination, exploiting (geographic and textual) tag information associated to its photos
- Use this description to calculate similarity between destinations, and recommend places which are more similar to a given one.

Prototype evaluation

Experimental results

- strong influence of geographic tags (are they really that useful?)
- still interesting surprises (e.g. Rome and Tarragona, Las Vegas and Macau, Milan and Verona/Turin, Venice and Amsterdam – see Figure 3)

User evaluation

An online survey was created in order to ask users which similarity measure was the best according to them. Users were randomly chosen by posting the survey link on social networks, and they had to judge the recommendatons provided for 5 cities chosen at random among the 233 top destinations.

During this process, users also had the possibility of checking the tags in common between different cities. The survey was completed by 113 users, who produced a total of 516 valid answers. Results are summarized in Fig. 5. The best system according to users, with 139 preferences, is D, which uses IDFU on the Random dataset. IDFU boosts tags which are used by many users on the same cities.

Conclusions

Evaluation of the four systems shows that user-related information is a key factor to improve similarity calculation, while the richness of the tags vocabulary is not as important. In general, the system has provided interesting suggestions and has been positively evaluated by interviewees.

Work is still at an early stage and future extensions are envisioned in the following directions: (i) dataset building, (ii) algorithm refinement, (iii) evaluation.

References

This information is mainly provided through:

- geotagging: the process of (explicitly or implicitly) annotating objects and online resources with geospatial context information, typically embedded within picture metadata (stored in EXIF format);
- tagging: assigning short strings of text to an individual piece of content in order to classify it for easier retrieval. The collection of terms assigned by all users to all the resources in a system is called folksonomy.

1) Cities as bags of tags

- given a set (S) of geolocated photos, a destination d according to a threshold ε, a set of tags can be retrieved;
- represent every destination as a vector \(v_d=(v_{d1}, v_{d2}, \ldots, v_{do})\), where \(o\) is the tag vocabulary size and every component in \(v_d\) is assigned the weighted frequency of its matching tag

2) Data collection and cleaning

233 top tourism destinations according to Euromonitor International (http://tinyurl.com/top150dest) have been considered. After a desambiguation phase, cities are matched to their unique WOEIDs which are then passed to Yahoo APIs for tag retrieval:

Top 1000 frequent tags have been analyzed (see Figure 2) and unrelavant tags have been removed. Two datasets have been generated:

- Top100 (only top 100 tags for each city, vocabulary size 9700 tags)
- Random (tag, user, and photo-related info, 10 photos/day for 300 random days, vocabulary size 50000 tags)

3) Weighting

Tag frequencies are normalized by using three different weighting factors:

- classical IDF (calculated on Destination),
- IDFP (taking Pictures into account), and
- IDFU (considering both Pictures and Users)

\[
IDF_i = \log \left(\frac{|D|}{|P_i|} \right) \quad \text{IDFP}_i = \frac{|P_i|}{|P|} \quad \text{IDFU}_i = \frac{|P_i|}{|P|} \cdot \frac{|U_i|}{|U|} \cdot \frac{|D|}{|D|}
\]

4) Recommending

Four different systems:

- System A ranks second, showing that we can still extract valuable information from the smaller Top100 dataset (compare with B, which only differs for the dataset).
- Objective: build a representative description for a destination, exploiting (geographic and textual) tag information associated to its photos
- Use this description to calculate similarity between destinations, and recommend places which are more similar to a given one.

Prototype evaluation

Experimental results

- strong influence of geographic tags (are they really that useful?)
- still interesting surprises (e.g. Rome and Tarragona, Las Vegas and Macau, Milan and Verona/Turin, Venice and Amsterdam – see Figure 3)

User evaluation

An online survey was created in order to ask users which similarity measure was the best according to them. Users were randomly chosen by posting the survey link on social networks, and they had to judge the recommendatons provided for 5 cities chosen at random among the 233 top destinations.

During this process, users also had the possibility of checking the tags in common between different cities. The survey was completed by 113 users, who produced a total of 516 valid answers. Results are summarized in Fig. 5. The best system according to users, with 139 preferences, is D, which uses IDFU on the Random dataset. IDFU boosts tags which are used by many users on the same cities.

Conclusions

Evaluation of the four systems shows that user-related information is a key factor to improve similarity calculation, while the richness of the tags vocabulary is not as important. In general, the system has provided interesting suggestions and has been positively evaluated by interviewees.

Work is still at an early stage and future extensions are envisioned in the following directions: (i) dataset building, (ii) algorithm refinement, (iii) evaluation.

References
