Notes on Spectral Clustering

Politecnico di Milano, 13/12/2013

Davide Eynard

Institute of Computational Sciences - Faculty of Informatics
Università della Svizzera Italiana
davide.eynard@usi.ch

Talk outline

- Spectral Clustering
 - Distances and similarity graphs
 - Graph Laplacians and their properties
 - Spectral clustering algorithms
 - SC under the hood

Similarity graph

- The objective of a clustering algorithm is partitioning data into groups such that:
 - Points in the same group are similar
 - Points in different groups are dissimilar
- Similarity graph G=(V,E)

(undirected graph)

- Vertices v_i and v_j are connected by a **weighted** edge if their similarity is above a given threshold
- GOAL: find a partition of the graph such that:
 - edges within a group have high weights
 - edges across different groups have low weights

Weighted adjacency matrix

- Let G(V,E) be an undirected graph with vertex set $V = \{v_1, ..., v_n\}$
- Weighted adjacency matrix $W=(w_{ij})_{i,j=1,...,n}$
 - $w_{ij} \ge 0$ is the weight of the edge between v_i and v_j
 - $w_{ij} = 0$ means that v_i and v_j are not connected by an edge
 - $\mathbf{w}_{ij} = \mathbf{w}_{ji}$
- Degree of a vertex $v_i \in V$: $d_i = \sum_{j=1..n} w_{ij}$
- Degree matrix $D = diag(d_1,...,d_n)$

Different similarity graphs

- ε-neighborhood
 - Connect all points whose pairwise distance is less than ε
- k-nearest neighbors
 - if $v_i \in knn(v_i)$ **OR** $v_j \in knn(v_i)$
 - if $v_i \in knn(v_i)$ **AND** $v_i \in knn(v_i)$ (mutual knn)
 - after connecting edges, use similarity as weight
- fully connected
 - all points with similarity $s_{ij} > 0$ are connected
 - To control neighborhoods to be *local*, use a similarity function like the *Gaussian*: $s(x_i, x_j) = exp(-\|x_i x_j\|^2/(2\sigma^2))$

Graph Laplacians

Graph Laplacian:

- L = D W (symmetric and positive semi-definite)
- Properties
 - Smallest eigenvalue $\lambda_1 = 0$ with eigenvector = 1
 - *n* non-negative, real-valued eigenvalues $0=\lambda_1 \le \lambda_2 \le ... \le \lambda_n$
 - the multiplicty k of the eigenvalue 0 of L equals the number of connected components A₁,...,A_k in the graph

Spectral Clustering algorithm (1)

Spectral Clustering algorithm

Input: Similarity matrix $S \subseteq \mathbb{R}^{n \times n}$, number k of clusters to construct.

- 1. Construct a similarity graph as previously described. Let W be its weighted adjacency matrix.
- 2. Compute the unnormalized Laplacian L
- 3. Compute the first k eigenvectors $u_1, ..., u_k$ of L
- **4.** Let $U \subseteq \mathbb{R}^{n \times k}$ be the matrix containing the vectors $u_1, ..., u_k$ as columns
- 5. For i=1,...,n let $y_i \in \mathbb{R}^k$ be the vector corresponding to the i-th row of U
- 6. Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters $C_1,...,C_k$.

Output: Clusters $A_1, ..., A_k$ with $A_i = \{j \mid y_j \in C_i\}$.

Normalized Graph Laplacians

Normalized graph Laplacians

- Symmetric: $L_{sym} = D^{-1/2}LD^{-1/2} = I-D^{-1/2}WD^{-1/2}$
- Random Walk: $L_{rw} = D^{-1}L = I D^{-1}W$

Properties

- λ is an eigenvalue of L_{rw} with eigenvector u iff λ is an eigenvalue of L_{sym} with eigenvector $w=D^{1/2}u$
- λ is an eigenvalue of L_{rw} with eigenvector u iff λ and u solve the generalized eigenproblem $Lu=\lambda Du$

Normalized Graph Laplacians

Normalized graph Laplacians

- Symmetric: $L_{sym} = D^{-1/2}LD^{-1/2} = I-D^{-1/2}WD^{-1/2}$
- Random Walk: $L_{rw} = D^{-1}L = I D^{-1}W$
- Properties (follow)
 - 0 is an eigenvalue of L_{rw} with 1 as eigenvector, and an eigenvalue of L_{sym} with eigenvector $D^{1/2}1$.
 - L_{sym} and L_{rw} are positive semi-definite and have n non-negative, real-valued eigenvalues $0=\lambda_1 \leq \lambda_2 \leq ... \leq \lambda_n$
 - the multiplicty k of the eigenvalue 0 of both L_{sym} and L_{rw} equals the number of connected components $A_1, ..., A_k$

Spectral Clustering algorithm (2)

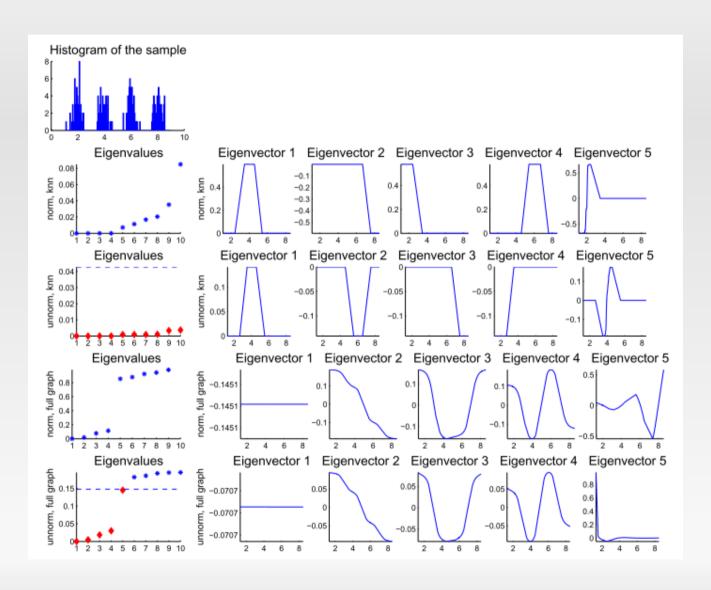
Normalized Spectral Clustering

Input: Similarity matrix $S \subseteq \mathbb{R}^{n \times n}$, number k of clusters to construct.

- *L*_{rw}:
 - 3. Compute the first k **generalized** eigenvectors $u_1,...,u_k$ of the generalized eigenproblem $Lu=\lambda Du$
- L_{sym} :
 - 2. Compute the **normalized** Laplacian $L_{\mbox{\scriptsize sym}}$
 - 3. Compute the first k eigenvectors $u_1, ..., u_k$ of L_{sym}
 - 4. normalize the eigenvectors

Output: Clusters $A_1, ..., A_k$ with $A_i = \{j \mid y_j \in C_i\}$.

A spectral clustering example



Under the hood

- 0-eigenvalues in the ideal case
- parameters are crucial:
 - k in k nearest neighbors
 - σ in Gaussian kernel
 - k (another one!) in k-means

Random Walk point of view

- Random walk: stochastic process which randomly jumps from one vertex to another
 - Clustering: finding a partition such that a random walk stays long within a cluster and seldom jumps between clusters
- Transition probability $p_{ij} = w_{ij}/d_i$
- Transition matrix: $P = D^{-1}W =$
 - λ is an eigenvalue of L_{rw} with eigenvector u iff 1- λ is an eigenvalue of P with eigenvector u

Random Walk point of view

- Random walk: stochastic process which randomly jumps from one vertex to another
 - Clustering: finding a partition such that a random walk stays long within a cluster and seldom jumps between clusters
- Transition probability $p_{ij} = w_{ij}/d_i$
- Transition matrix: $P = D^{-1}W =$
 - λ is an eigenvalue of L_{rw} with eigenvector u iff 1- λ is an eigenvalue of P with eigenvector u

References

Von Luxburg, U. (2007). A tutorial on spectral clustering.
 Statistics and Computing, 17(4), 395-416. Springer.

Thank you!

Thanks for your attention!

Questions?