Lab03 - Linear Regression basics

1) Linear regression: simple exercise with only 8 points.

The exercise has ben solved step by step, using R only to help with calculations. First of all, let us estimate the parameters beta0 (b0) and beta1 (b1), i.e. the intercept and slope of the linear model.

$$
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x
$$

\# set up the predictor variables xi and the responses yi \# note that x and y have been generated as follows:
\# $\mathrm{x}=$ rnorm(8)
\# $y=2$ * $x+$ rnorm $(8,5, .5)$
\# then they have been rounded to ease the calculations
$x=c(0.75,-0.64,1.43,-0.61,0.23,0.43,-1.48,2.06)$
$y=c(6.60,4.31,7.51,3.48,5.21,5.74,1.65,9.76)$
$\mathrm{n}=$ length (x)
First, calculate b1 (slope) and b0

$$
\begin{aligned}
& \hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, \\
& \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
\end{aligned}
$$

```
mean(x)
# [1] 0.27125
mean(y)
# [1] 5.5325
x-0.27
#[1] 0.48-0.91 1.16 -0.88-0.04 0.16-1.75 1.79
y-5.53
# [1] 1.07-1.22 1.98-2.05 -0.32 0.21-3.88 4.23
(x-0.27)* (y - 5.53)
# [1] 0.51 1.11 2.30 1.80 0.01 0.03 6.79 7.57
## sum((x-0.27) * (y-5.53)) = 20.13
(x-0.27)^2
# [1] 0.23 0.83 1.35 0.77 0.00 0.03 3.06 3.20
## sum((x-0.27)^2) = 9.47
## b1 = slope coefficient = sum((x-0.27) * (y-5.53))/sum((x-0.27)^2)
b1 = 20.13/9.47
# b1 = 2.12
## b0 = intercept
```

```
# b0 = mean(y) - b1 * mean(x)
b0 = 5.53-2.12 * 0.27
# b0 = 4.96
# given the parameters we calculated, the estimated yhat = 4.96 + 2.12 * x
# plot the points
plot(x,y)
# draw the estimated function
abline(b0,b1);
# draw the original function
abline(5,2,col="red")
```


2) Calculate the residuals

yhat $=b 0+b 1$ * x
RSS=sum((y-yhat)^2)
\# RSS $=1.059709$
Note that this value of RSS is a minimum: changing values of b0 and b1 RSS will always be bigger

3) Calculate the standard error:

$$
\mathrm{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right], \quad \mathrm{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}
$$

We already have mean $(x)=0.27$ and the $S S E=9.47$. However, in practice we don't know sigma (we are usually not given the original distribution), so we need to estimate that. RSE (the Residual Standard Error) is a good estimate for it:

$$
\mathrm{RSE}=\sqrt{\mathrm{RSS} /(n-2)}
$$

```
RSE = sqrt(RSS/(n-2))
# RSE = 0.42
SEb0 = sqrt(.42^2 * (1/8 + (0.27^2 / 9.47)))
# SEb0 = 0.1529965
SEb1 = sqrt(.42^2 / 9.47)
# SEb1 = 0.1364817
```


4) Compute $\mathbf{9 5 \%}$ confidence intervals

sample of data. For linear regression, the 95% confidence interval for β_{1} approximately takes the form

$$
\begin{equation*}
\hat{\beta}_{1} \pm 2 \cdot \mathrm{SE}\left(\hat{\beta}_{1}\right) . \tag{3.9}
\end{equation*}
$$

```
c(b1-2*SEb1, b1+2*SEb1)
```

\# [1] 1.8526972 .398623
c(b0-2*SEbO, b0+2*SEb0)
\# [1] 4.6516075 .263593

NOTE that 2 is just an approximation (see note 3 at page 66). The next step will show how to calculate the proper interval to have 95% confidence.

5) Compute the t-statistic

$t=(b 1-0) /(S E b 1)=15.56769$
For simple linear regression we use a t-distribution with $n-2$ degrees of freedom: the sample size minus the number of estimated parameters.

Look up the table with the pre-computed probabilities for different degrees of freedom and values of t :

(original source: http://bcs.whfreeman.com/ips6e/content/cat_050/ips6e_table-d.pdf)

6) Recall RSE and compute $\mathbf{R}^{\wedge} \mathbf{2}$

RSE is an estimate of the lack of fit:
$\operatorname{RSE}=\sqrt{\text { RSS } /(n-2)}$
\% TSS = total sum of squares (similar to RSS but wrt the mean and not the yi)
TSS = sum((y-mean(y))^2)
\% [1] 43.84995
\% compute R^2
Rs = (TSS-RSS)/TSS
\% [1] 0.9758408
\% show relationship between $\mathrm{R}^{\wedge} 2$ and correlation in the univariate case
$\operatorname{cor}(x, y)^{\wedge} 2$

7) Show semi-automatic solution

The experiment above can be conducted in a faster way, just by making R do more calculations (instead of moving actual numbers from one formula to another - that was just to give a step-bystep introduction to linear regression). Here is the code:
\# initialize variables
$x=c(0.75,-0.64,1.43,-0.61,0.23,0.43,-1.48,2.06)$
$y=c(6.60,4.31,7.51,3.48,5.21,5.74,1.65,9.76)$
$\mathrm{n}=$ length (x)

```
# find parameters
b1 = sum((x-mean(x)) * (y-mean(y))) / sum((x-mean(x))^2)
b0 = mean(y) - b1 * mean(x)
# calculate RSS and RSE
yhat = b0 + b1 *x
RSS=sum((y-yhat)^2)
RSE = sqrt(RSS/(n-2))
# calculate SEb0 and SEb1
SEb0 = sqrt(RSE^2 * (1/length(x) + mean(x)^2/sum((x-mean(x))^2)))
SEb1 = sqrt(RSE^2 /sum((x-mean(x))^2))
# compute t-statistics
t0 = (b0-0) / (SEb0)
t1 = (b1-0) / (SEb1)
# compute R^2
TSS = sum((y-mean(y))^2)
Rs = (TSS-RSS)/TSS
```


8) Redo everything automagically with R

```
help(lm)
```

Im.fit $=\operatorname{Im}(y \sim x)$
plot(x,y); abline(lm.fit); abline(5,2,col="red")
\# show that the values we find are consistent with the ones we calculated previously
summary(lm.fit)
coef(Im.fit)
confint(lm.fit)
\# show that predictions can also be done
predict(lm.fit,data.frame $(x=4)$, interval="confidence")
9) Finally, show how estimates change with (1) number of points and (2) variance
\# more points
$x=$ rnorm(100)
$y=2 * x+\operatorname{rnorm}(100,5, .5)$
Im.fit $=\operatorname{Im}(y \sim x)$
plot(x,y); abline(lm.fit); abline(5,2,col="red")
summary(lm.fit)
\# same points as in simple experiment, much more variance
$x=\operatorname{rnorm}(8)$
$y=2{ }^{*} x+\operatorname{rnorm}(8,5,5)$

