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Date Topic
06/05/2012 | Clustering I: Introduction, K-means
07/05/2012 | Clustering Il: K-M alternatives, Hierarchical, SOM
13/05/2012 | Clustering IlI: Mixture of Gaussians, DBSCAN, J-P
14/05/2012 | Clustering IV: Spectral Clustering (+Text?)
20/05/2012 | Clustering V: Evaluation Measures
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Lecture outline

* Gaussian Mixtures
e DBSCAN
e Jarvis-Patrick

Mixture of Gaussians
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Clustering as a Mixture of Gaussians

* Gaussians Mixture is a model-based clustering approach

° It uses a statistical model for clusters and attempts to
optimize the fit between the data and the model.

© Each cluster can be mathematically represented by a
parametric distribution, like a Gaussian (continuous) or a
Poisson (discrete)

© The entire data set is modelled by a mixture of these
distributions

* A mixture model with high likelihood tends to have the following
traits:
° Component distributions have high "peaks" (data in one
cluster are tight)

© The mixture model "covers" the data well (dominant
patterns in data are captured by component distributions)
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Advantages of Model-Based Clustering

* well studied statistical inference techniques available
* flexibility in choosing the component distribution

* obtain a density estimation for each cluster

* a "soft" classification is available
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Mixture of Gaussians

It is the most widely used model-based clustering method: we can
actually consider clusters as Gaussian distributions centered on
their barycentres (as we can see in the figure, where the grey circle
represents the variance of the distribution).
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How does it work?

* it chooses the component (the Gaussian) at random with
probability P(w;)
* it samples a point N (u;, o21)
o Let’s suppose we have =1, zs,...,x, and
P(wy),...,P(wk),o
© We can obtain the likelihood of the sample:

P(x|wi, p1, p2, - - ., iic) (probability that an observation from
class w; would have value x given class means u1, ..., ux)

° What we really want is to maximize P(z|u1, p2, .. ., jix)

... Can we do it? How?

(let’s first look at some examples on Expectation Maximization...)
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The Algorithm

The algorithm is composed of the following steps:

1. Initialize parameters:

>\0 = {,ugO)a,U’gO)a"'7,“'560)31950)7])&0)7' "ap](CO)}

where p(t) is shorthand for P(w;) at ¢-th iteration

%

2. E-step:
Ploslzr. Aoy = L@klwi, Ad)P(wjlAe) Palwi, 1", 0®)pi(t)
(@ilor, Ae) = P(zk|x - D g2y,®
(xk t) Zk P($k|wjvruj O )pj
3. M-step:
(t+1) _ 2ok Plwilzy, Adr)ay
‘ >k Plwilzg, At)
(t+1) _ 2o Plwilzr, At)
p; = R

where R is the number of records

Question

What if we had a dataset like this?

T
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DBSCAN

* Density Based Spatial Clustering of Applications with Noise
o Data points are connected through density

* Finds clusters of arbitrary shapes
* Handles well noise in the dataset
* Single scan on all the elements of the dataset

T
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DBSCAN: background

* Two parameters to define density:
° Eps: radius
° MinPts: minimum number of points within the specified
radius

* Number of points within a specified radius:
° Npps(p) : {q € Dl|dist(p,q) < Eps}

T
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DBSCAN: background

® A point is a core point if it has more than Min Pts points within Eps

® A border point has fewer than Min Pts within Eps, but is in the neighborhood of a
core point

® A noise point is any point that is not a core point or a border point.
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DBSCAN: core, border and noise points

Original Points Point types: core,
border and noise

Eps =10, MinPts =4

T
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DBSCAN: background

* A point p is directly density-reachable from ¢ with respect to
(E'ps, MinPts) if:
1. pE NEps(q)
2. qis a Core point
(the relation is symmetric for pairs of core points)
* A point p is density-reachable from ¢ if there is a chain of

points p1, ..., p, (Where p; = ¢ and p,, = p) such that p; 11 is
directly density-reachable from p; for every i

° (two border points might not be density-reachable)
* A point p is density-connected to ¢ if there’s a point o such
that both p and ¢ are density-reachable from o

© (given two border points in the same cluster C, there must
be a core point in C from which both border points are
density-reachable)

I
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DBSCAN: background

* Density-based notion of a cluster:

© a cluster is defined to be a set of density-connected points
which is maximal wrt. density-reachability

© Noise is simply the set of points in the dataset D not
belonging to any of its clusters

T
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DBSCAN algorithm

* Eliminate noise points
* Perform clustering on the remaining points

DBSCAN (SetOfPoints, Eps, MinPts)

// BetofPoints is UNCLASSIFIED
ClusterId := nextId(NOISE);
FOR i FRCM 1 TO SetOfPoints.size DO
Point := SetOfPoints.get (i) ;
IF Point.ClId = UNCLASSIFIED THEN
IF ExpandCluster{Set0OfPoints, Point,
ClusterId, Eps, MinPts) THEN
ClusterId := nextId{ClusterId)
EMD IF
END. IF
END FOR
END; // DBESCAN
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DBSCAN evaluation

database 1 database 2 database 3
figure 5: Clusterings discovered by CLARANS

database 1 database 2 database 3
figure 6: Clusterings discovered by DBSCAN

* CLARANS, a K-Medoid algorithm, compared with DBSCAN
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When DBSCAN works well

Original Points Clusters

* Resistant to noise
* Can handle clusters of different shapes and sizes

~p. 20/32

Clustering using a similarity measure

R.A. Jarvis and E.A. Patrick, 1973

* Many clustering algorithms are biased towards finding globular
clusters. Such algorithms are not suitable for chemical
clustering, where long "stringy" clusters are the rule, not the
exception.

* To be effective for clustering chemical structures, a clustering
algorithm must be self-scaling, since it is expected to find both
straggly, diverse clusters and tight ones

* => Cluster data in a nonparametric way, when the globular
concept of a cluster is not acceptable

T
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Jarvis-Patrick

Fig. 1. Globular clusters. Fig. 2. Nonglobular clusters.
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Jarvis-Patrick

* Letxy,29,...,x, be a set of data vectors in an L-dimensional
Euclidean vector space
* Data points are similar to the extent that they share the same
near neighbors
° In particular, they are similar to the extent that their
respective k nearest neighbor lists match

© In addition, for this similarity measure to be valid, it is
required that the tested points themselves belong to the
common neighborhood

T
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Jarvis-Patrick

Automatic scaling of neighborhoods (k£=5)
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Jarvis-Patrick

“Trap condition” for k=7: X, belongs to X;’s neighborhood, but not

vice versa.
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JP algorithm

1.

for each point in the dataset, list the k nearest neighbors by
order number. Regard each point as its own zeroth neighbor.
Once the neighborhood lists have been tabulated, the raw data
can be discarded.

. Set up an integer label table of length n, with each entry initially

set to the first entry of the corresponding neighborhood row.

. All possible pairs of neighborhood rows are tested as follows:

replace both label entries by the smaller of the two existing
entries if both Oth neighbors are found in both neighborhood
rows and at least k; neighbor matches exist between the two
rows. Also, replace all appearances of the higher label
(throughout the entire label table) with the lower label if the
above test is successful.

. The clusters under the k, k; selections are now indicated by

identical labeling of the points belonging to the clusters.
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JP algorithm

LABEL NEIGHBORHOOD TABLE

TABLE zeroth neighbor (the point itself)
nearest neighbor i

second nearest neighbor

[ k¢ nearest neighbor.
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JP: alternative approaches

Similarity matrix
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Fig. 8. Example of similarity matrix using the number of shared near
neighbors as point pair similarity measure with equally weighted
votes. (a) Sample points, (b) Similarity matrix for k = 3.
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JP: alternative approaches

Hierarchical clustering - dendrogram
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JP: conclusions

Pros:
* The same results are produced regardless of input order
* The number of clusters is not required in advance
* Parameters k, k; can be adjusted to match a particular need
* Auto scaling is built into the method
* It will find tight clusters embedded in loose ones
* It is not biased towards globular clusters
* The clustering step is very fast
* Overhead requirements are relatively low
Cons:

* it requires a list of near neighbors which is computationally
expensive to generate

1
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Bibliography

* (Clustering with gaussian mixtures
Andrew W. Moore

* Clustering Using a Similarity Measure Based on Shared Near
Neighbors (paper here)

* A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise (paper here)
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* The end
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