Pattern Analysis and Machine Intelligence Lecture Notes on Clustering (II)

2012-2013

Davide Eynard

davide.eynard@usi.ch

Department of Electronics and Information Politecnico di Milano

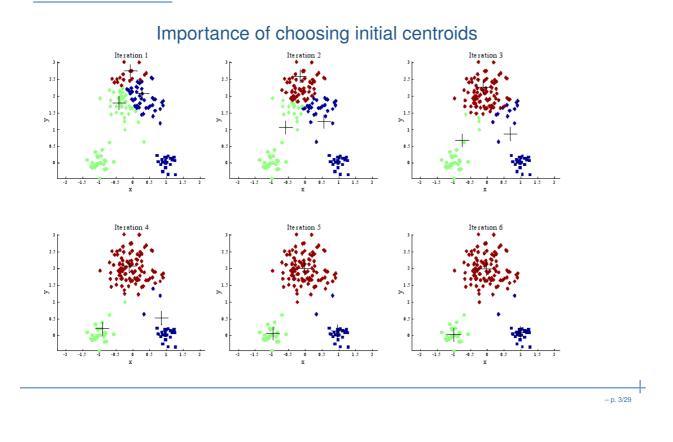
Course Schedule [Tentative]

Date	Торіс
06/05/2012	Clustering I: Introduction, K-means
07/05/2012	Clustering II: K-M alternatives, Hierarchical, SOM
13/05/2012	Clustering III: Mixture of Gaussians, DBSCAN, J-P
14/05/2012	Clustering IV: Spectral Clustering (+Text?)
20/05/2012	Clustering V: Evaluation Measures

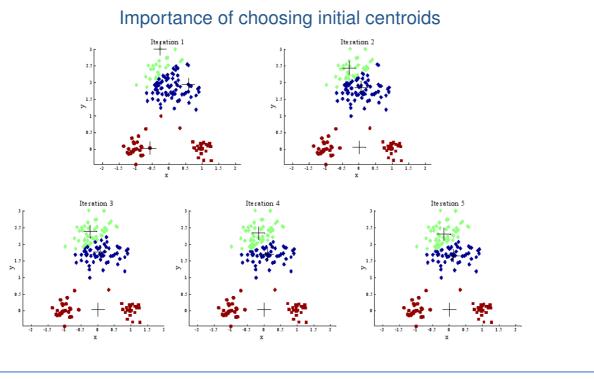
– p. 1/29

┝

K-Means limits



K-Means limits

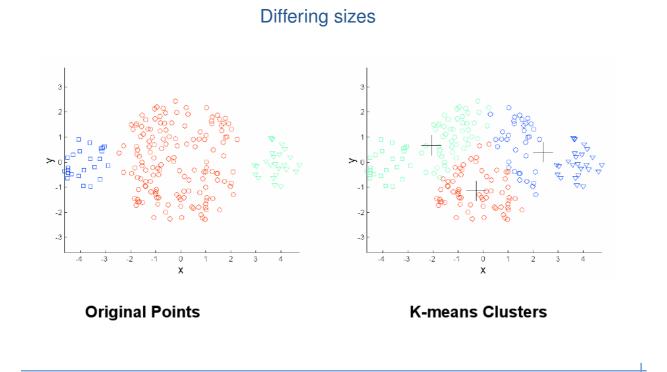


– p. 3/29

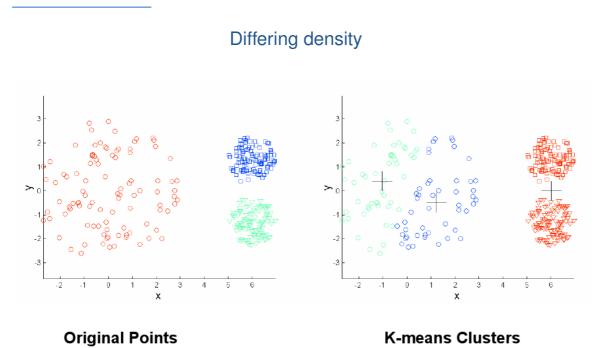
+

ł

K-Means limits

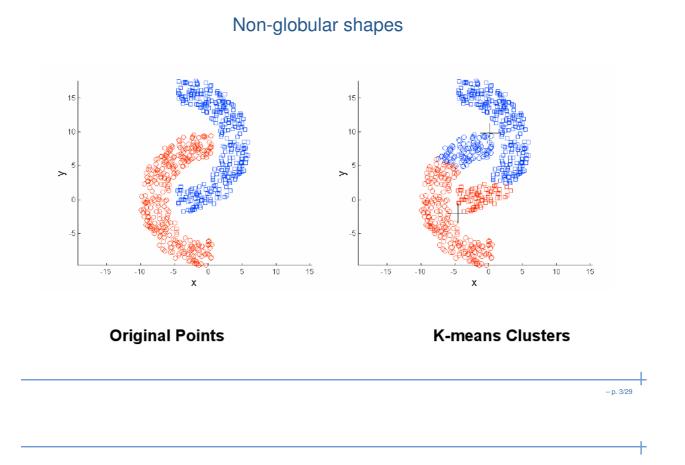


K-Means limits



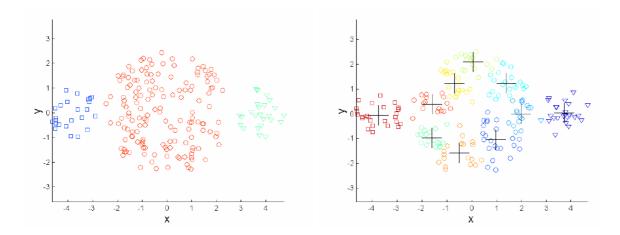
– p. 3/29

K-Means limits



K-Means: higher K

What if we tried to increase K to solve K-Means problems?

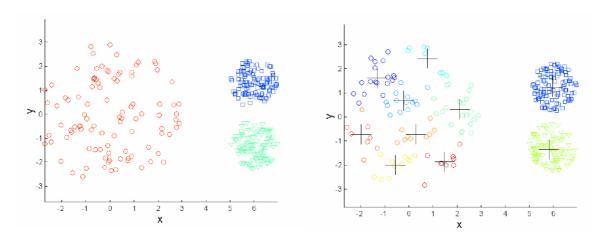


Original Points

K-means Clusters

K-Means: higher K

What if we tried to increase K to solve K-Means problems?

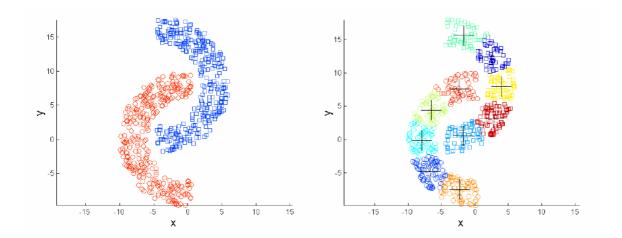


Original Points

K-means Clusters

K-Means: higher K

What if we tried to increase K to solve K-Means problems?



Original Points

K-means Clusters

K-Medoids

- K-Means algorithm is too sensitive to outliers
 - An object with an extremely large value may substantially distort the distribution of the data
- **Medoid**: the most centrally located point in a cluster, as a representative point of the cluster
- Note: while a medoid is always a point inside a cluster too, a centroid could be not part of the cluster
- Analogy to using *medians*, instead of *means*, to describe the representative point of a set
 - Mean of 1, 3, 5, 7, 9 is 5
 - Mean of 1, 3, 5, 7, 1009 is 205
 - Median of 1, 3, 5, 7, 1009 is 5

PAM

PAM means Partitioning Around Medoids. The algorithm follows:

- 1. Given k
- 2. Randomly pick k instances as initial medoids
- 3. Assign each data point to the nearest medoid x
- 4. Calculate the objective function
 - the sum of dissimilarities of all points to their nearest medoids. (squared-error criterion)
- 5. For each non-medoid point y
 - swap x and y and calculate the objective function
- 6. Select the configuration with the lowest cost
- 7. Repeat (3-6) until no change

– p. 5/29

PAM

- Pam is more robust than k-means in the presence of noise and outliers
 - A medoid is less influenced by outliers or other extreme values than a mean (can you tell why?)
- Pam works well for small data sets but does not scale well for large data sets
 - $^\circ~O(k(n-k)^2)$ for each change where n is # of data objects, k is # of clusters
- NOTE: not having to calculate a *mean*, we do not need actual *positions* of points but just their *distances*!

Fuzzy C-Means

Fuzzy C-Means (FCM, developed by Dunn in 1973 and improved by Bezdek in 1981) is a method of clustering which allows one piece of data to belong to two or more clusters.

- frequently used in pattern recognition
- based on minimization of the following objective function:

$$J_m = \sum_{i=1}^N \sum_{j=1}^C u_{ij}^m ||x_i - c_j||^2, 1 \le m < \infty$$

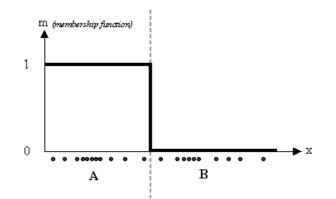
where:

m is any real number greater than 1 (fuzziness coefficient),

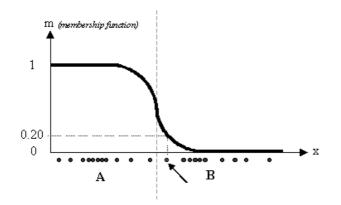
- u_{ij} is the degree of membership of x_i in the cluster j,
- x_i is the *i*-th of d-dimensional measured data,
- \boldsymbol{c}_{j} is the d-dimension center of the cluster,
- $\|\cdot\|$ is any norm expressing the similarity between measured data and the center.

K-Means vs. FCM

 With K-Means, every piece of data either belongs to centroid A or to centroid B



• With FCM, data elements do not belong exclusively to one cluster, but they may belong to several clusters (with different membership values)



– p. 9/29

t

Data representation

$$(KM)U_{N\times C} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ \cdots & \cdots \\ 0 & 1 \end{bmatrix}$$
$$(FCM)U_{N\times C} = \begin{bmatrix} 0.8 & 0.2 \\ 0.3 & 0.7 \\ 0.6 & 0.4 \\ \cdots & \cdots \\ 0.9 & 0.1 \end{bmatrix}$$

– p. 10/29

t

+

FCM Algorithm

The algorithm is composed of the following steps:

- 1. Initialize $U = [u_{ij}]$ matrix, $U^{(0)}$
- 2. At *t*-step: calculate the centers vectors $C^{(t)} = [c_j]$ with $U^{(t)}$:

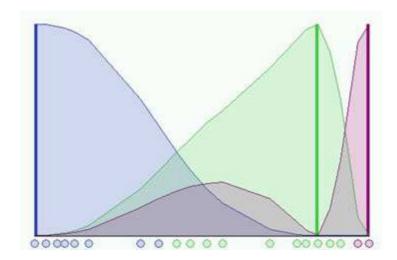
$$c_j = \frac{\sum_{i=1}^N u_{ij}^m \cdot x_i}{\sum_{i=1}^N u_{ij}^m}$$

3. Update $U^{(t)}$, $U^{(t+1)}$:

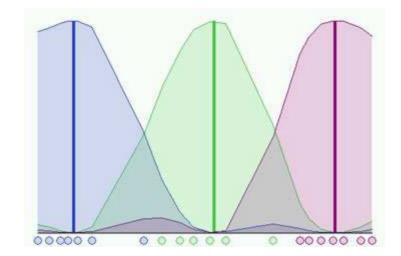
$$u_{ij} = \frac{1}{\sum_{k=1}^{C} \left(\frac{\|x_i - c_j\|}{\|x_i - c_k\|}\right)^{\frac{2}{m-1}}}$$

4. If $||U^{(k+1)} - U^{(k)}|| < \varepsilon$ then STOP; otherwise return to step 2.

An Example



An Example



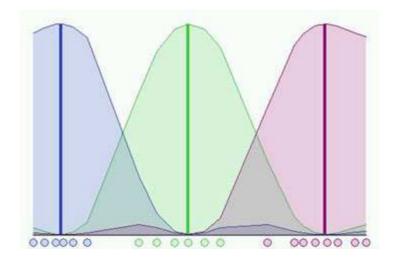
+

╀

+

– p. 12/29

An Example



Hierarchical Clustering

- Top-down vs Bottom-up
- Top-down (or *divisive*):
 - ° Start with one universal cluster
 - Split it into two clusters
 - Proceed recursively on each subset
- Bottom-up (or agglomerative):
 - Start with single-instance clusters ("every item is a cluster")
 - ° At each step, join the two closest clusters
 - (design decision: distance between clusters)

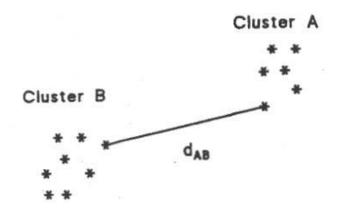
– p. 12/29

Agglomerative Hierarchical Clustering

Given a set of N items to be clustered, and an N*N distance (or dissimilarity) matrix, the basic process of agglomerative hierarchical clustering is the following:

- 1. Start by assigning each item to a cluster. Let the dissimilarities between the clusters be the same as the dissimilarities between the items they contain.
- 2. Find the closest (most similar) pair of clusters and merge them into a single cluster. Now, you have one cluster less.
- 3. Compute dissimilarities between the new cluster and each of the old ones.
- 4. Repeat Steps 2 and 3 until all items are clustered into a single cluster of size *N*.

 We consider the distance between two clusters to be equal to the shortest distance from any member of one cluster to any member of the other one (greatest similarity).

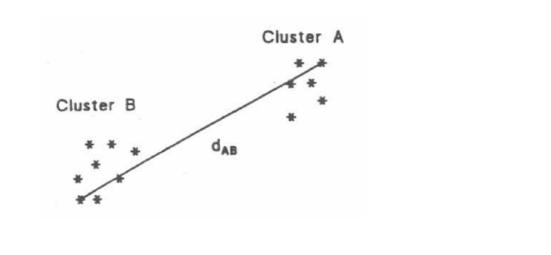


– p. 16/29

– p. 15/29

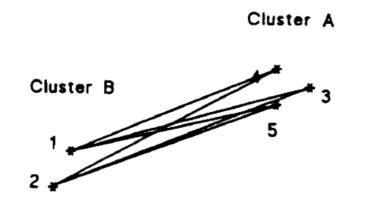
Complete Linkage (CL) clustering

• We consider the distance between two clusters to be equal to the **greatest** distance from any member of one cluster to any member of the other one (**smallest** similarity).



Group Average (GA) clustering

• We consider the distance between two clusters to be equal to the **average** distance from any member of one cluster to any member of the other one.



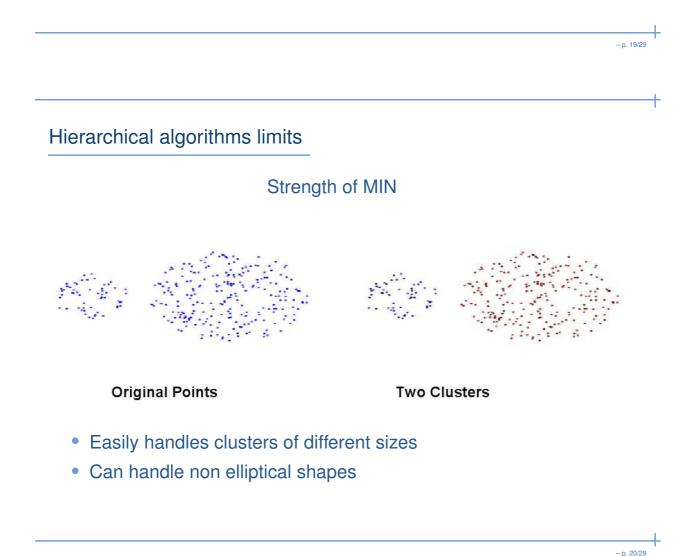
– p. 18/29

– p. 17/29

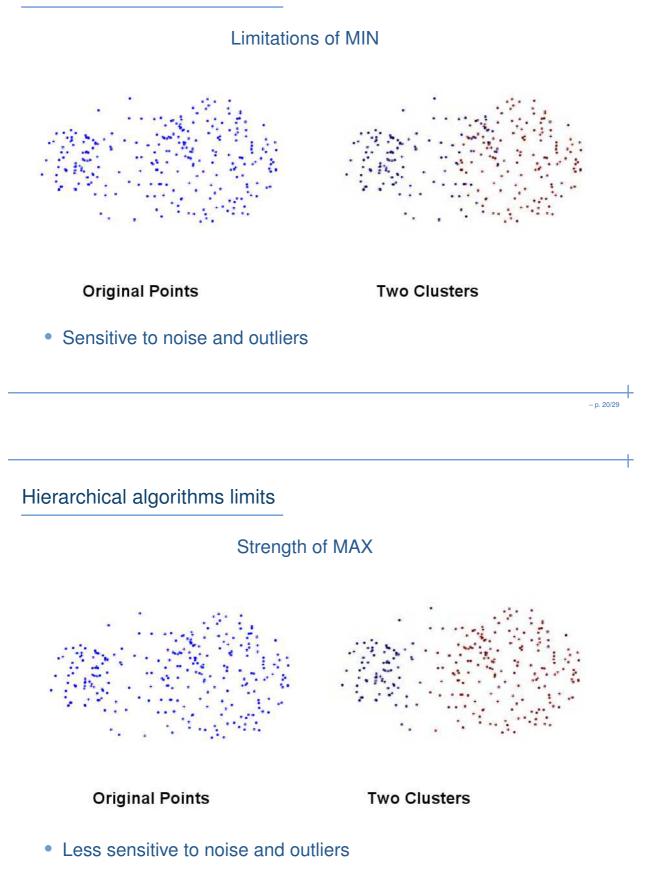
About distances

If the data exhibit strong clustering tendency, all 3 methods produce similar results.

- **SL**: requires only a single dissimilarity to be small. Drawback: produced clusters can violate the "compactness" property (cluster with large diameters)
- **CL**: opposite extreme (compact clusters with small diameters, but can violate the "closeness" property)
- **GA**: compromise, it attempts to produce relatively compact clusters and relatively far apart. BUT it depends on the dissimilarity scale.

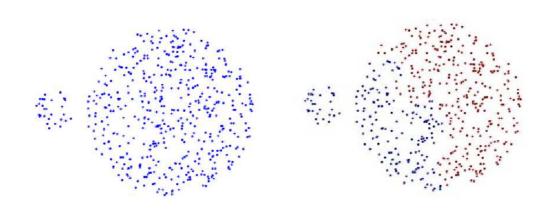


Hierarchical algorithms limits



+

Hierarchical algorithms limits



- Tends to break large clusters
- Biased toward globular clusters

Hierarchical clustering: Summary

- Advantages
 - It's nice that you get a hierarchy instead of an amorphous collection of groups
 - $^{\circ}$ If you want k groups, just cut the (k-1) longest links
- Disadvantages
 - $^{\circ}~$ It doesn't scale well: time complexity of at least $O(n^2),$ where n is the number of objects

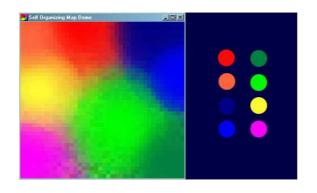
– p. 20/29

Self Organizing Features Maps

Kohonen Self Organizing Features Maps (a.k.a. SOM) provide a way to represent multidimensional data in much lower dimensional spaces.

- They implement a data compression technique similar to vector quantization
- They store information in such a way that any topological relationships within the training set are maintained

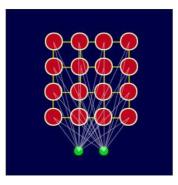
Example: Mapping of colors from their three dimensional components (i.e., red, green and blue) into two dimensions.



Self Organizing Feature Maps: The Topology

- The network is a lattice of "nodes", each of which is fully connected to the input layer
- Each node has a specific topological position and contains a vector of weights of the same dimension as the input vectors
- There are no lateral connections between nodes within the lattice

A SOM does not need a target output to be specified; instead, where the node weights match the input vector, that area of the lattice is selectively optimized to more closely resemble the data vector



– p. 23/29

Self Organizing Features Maps: The Algorithm

Training occurs in several steps over many iterations:

- 1. Initialize each node's weights
- 2. Given a random vector from the training set to the lattice
- 3. Examinate every node to calculate which one's weights are most similar to the input vector (the winning node is commonly known as the Best Matching Unit)
- 4. Calculate the radius of the neighborhood of the BMU (this is a value that starts large, typically set to the 'radius' of the lattice, but diminishes each time-step). Any nodes found within this radius are deemed to be inside the BMU's neighborhood
- 5. Each neighboring node's weights are adjusted to make them more similar to the input vector. The closer a node is to the BMU, the more its weights get altered
- 6. Repeat step 2 for N iterations

There are few things that have to be specified in the previous algorithm:

- Choosing the weights initialization
- We select the Best Matching Unit according to the distance between its weights and the input vector:

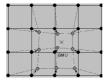
$$||\mathbf{x} - \mathbf{w}_i|| = \sqrt{\sum_{k=1}^p (\mathbf{x}[k] - \mathbf{w}_i[k])^2}$$

Select the neighborhood according to some decreasing function

 $h_{ij} = e^{-\frac{(i-j)^2}{2\sigma^2}}$

Define the updating rule

$$\mathbf{w}_{i}(t+1) = \begin{cases} \mathbf{w}_{i} + \alpha(t)[\mathbf{x}(t) - \mathbf{w}_{i}(t)], & i \in N_{i}(t) \\ \mathbf{w}_{i}, & i \notin N_{i}(t) \end{cases}$$



– p. 25/29

Self Organizing Feature Maps Demo

Courtesy of: http://www.ai-junkie.com

Bibliography

- A Tutorial on Clustering Algorithms Online tutorial by M. Matteucci
- K-means and Hierarchical Clustering Tutorial Slides by A. Moore
- "Metodologie per Sistemi Intelligenti" course Clustering Tutorial Slides by P.L. Lanzi
- K-Means Clustering Tutorials Online tutorials by K. Teknomo

– p. 28/29