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Talk outline

Spectral Clustering

Distances and similarity graphs
Graph Laplacians and their properties
Spectral clustering algorithms

SC under the hood
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Similarity graph

The objective of a clustering algorithm is partitioning
data into groups such that:

Points in the same group are similar
Points in different groups are dissimilar

Similarity graph G=(VE) (undirected graph)

Vertices v_and v.are connected by a weighted edge if their
similarity is above a given threshold

GOAL.: find a partition of the graph such that:

edges within a group have high weights
edges across different groups have low weights
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Weighted adjacency matrix

Let G(VE) be an undirected graph with vertex set
V= {v nY }

Weighted adjacency matrix W=(w ) _

WUZO is the weight of the edge between v. and v
WU,=0 means that v and v.are not connected by an edge
W =W

ij Ji

Degree of avertexveV: d=>_ & w

Degree matrix D=diag(d ,....d )
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Different similarity graphs

e-neighborhood
Connect all points whose pairwise distance is less than ¢

k-nearest neighbors
if v.e knn(v/ OR A knn(v)
if v e knn(v/ AND V.€ knn(v) (mutual knn)
after connecting edges, use similarity as weight

fully connected

all points with similarity sU,>0 are connected

To control neighborhoods to be /ocal, use a similarity
function like the Gaussian: s(x,x )=exp(- Xi-XjHZ/(ZUZ))
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Graph Laplacians

Graph Laplacian:

L=D-W (symmetric and positive semi-definite)
Properties

Smallest eigenvalue A =0 with eigenvector = 1

n non-negative, real-valued eigenvalues 0=A <A =<...<A_

the multiplicty k of the eigenvalue 0 of L equals the number
of connected components A ,...,A in the graph
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Spectral Clustering algorithm (1)

Spectral Clustering algorithm
Input: Similarity matrix S € R™", number k of clusters to construct.

Construct a similarity graph as previously described. Let W be its
weighted adjacency matrix.

Compute the unnormalized Laplacian L

Compute the first k eigenvectors u ,...,u of L
Let U & R be the matrix containing the vectors u,...,u ascolumns
Fori=1,...,nlety & R* be the vector corresponding to the i-th row of U

Cluster the points (yi)i=1 ;. in R* with the k-means algorithm into clusters
c,..C

1

Output: Clusters A ,...,A with A= {j | y. € C}.

2"
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Normalized Graph Laplacians

Normalized graph Laplacians
Symmetric: Lsym=D'1/2LD'1/2 = [-D"*WD**
Random Walk: L _=D"L=I-D"'W

Properties

A is an eigenvalue of L with eigenvector u iff A is an

eigenvalue of L with eigenvector w=D"u

A is an eigenvalue of L with eigenvector u iff A and u solve
the generalized eigenproblem Lu=ADu
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Normalized Graph Laplacians

Normalized graph Laplacians

Symmetric: LS = D121 D2 = [-D1PWD1~2

y

Random Walk: LrW=D'1L=I-D'1W

Properties (follow)

0 is an eigenvalue of L with 1 as eigenvector, and an

eigenvalue of L with eigenvector D**1.

L __andL_ are positive semi-definite and have n non-

sym

negative, real-valued eigenvalues 0=A =A <...<A_

rw

the multiplicty k of the eigenvalue 0 of both LS;vm and L
equals the number of connected components A ,...,A
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Spectral Clustering algorithm (2)

Normalized Spectral Clustering

Input: Similarity matrix S € R™", number k of clusters to construct.

L :

rw

Compute the first k generalized eigenvectors u ,...,u, of the generalized
eigenproblem Lu=ADu

L :
sym
Compute the normalized Laplacian Lsym
Compute the first k eigenvectors u,...,u, of Lsym

normalize the eigenvectors

Output: Clusters A ,...,A with A= {j | y € C}t.
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A spectral clustering example

Histogram of the sample

D 2 4 ] & 10
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5

0,08 " |'_'II ] | If_'|| 05
| 5

0,06 04 H | -2 '| 04 | 0.4 [ |
: : | || 0.3 | \ [ y

5 g ozt [ | 0.4 | oz} | 0.2 f \
0.0z . [ 03 \ | | 5
v = | e | | | ll -0.5

e = : : o

+ 1]
1234567489510 e 4 6 8 2 4 & B 2 4 5 8 2 4 & 8 2 4 6 B
Eigenvalues

norm, knn
=
[=3
=
norm, knn

Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5

14/05/2013

(11~ P 3 g T I -
= E [ ] [ | 0
s = ! -0.05 | [ -oos | -oos| | |
E o0z E . I| \ \ I| | II ".I S
E 001 € - o % ki [} ) -04]
" + 4 | II | II I||.|
23 4 5 6TE 810 2 4 6 B 2 4 B 8 Z2 4 & 8 2 4 6 B Z 4 6 48
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvectar 3 Eigenvector 4 Eigenvector 5
¥ = o r 05 |
& oa .- & -0.1451 x| 0.1 \ll / 0.1 Illllnllllll ’
— 0.8 b |
2 s 2 -0.1451 o ] '|| 0 g 0 x,_/.\" 'I
g IZI..E E‘ -1 a | 'II 1 |II II'\_ III'\. ||II
€ .u PR, e i Ill\d_/'l \J 05 i
'1' 2 3 45876891 2 i & 4 2 4 -] & 2 4 B B 2 i 6 3 Z2 4 -] B
Eigenvalues Eigenvector 1 Eigenvector 2 Eigenvector 3 Eigenvector 4 Eigenvector 5
D016k — = = g == = = = & -0.0707 0.08 e \ j o [\l' w
E 0.1 .;E_’ o & | | 0 I| Il, wh
5 g -u.omr . ‘Ill III' .III II| \ 04
£ nos = _0.05 \ — -0.05 0z L
= dae! = I 5, \/ ks
123 456587 6010 2 4 6 8 2 4 8 & 2 4 6B B 2 4 & & 2 4 8 &

Notes on Spectral Clustering and Joint Diagonalization

11/16



Under the hood

O-eigenvalues in the ideal case

parameters are crucial:
k in k nearest neighbors

o in Gaussian kernel

k (another one!) in k-means
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Random Walk point of view

Random walk: stochastic process which randomly
jumps from one vertex to another

Clustering: finding a partition such that a random walk stays
long within a cluster and seldom jumps between clusters

Transition probability plj::wy/di
Transition matrix: P = D'W => L =I-P

A is an eigenvalue of L with eigenvector u iff 1-A is an
eigenvalue of P with eigenvector u
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Thank youl!

Thanks for your attention!

Questions?
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