

Notes on Spectral Clustering

Politecnico di Milano, 14/05/2013

Davide Eynard

Institute of Computational Sciences - Faculty of Informatics Università della Svizzera Italiana davide.eynard@usi.ch

Talk outline

- Spectral Clustering
 - Distances and similarity graphs
 - Graph Laplacians and their properties
 - Spectral clustering algorithms
 - SC under the hood

Similarity graph

- The objective of a clustering algorithm is partitioning data into groups such that:
 - Points in the same group are similar
 - Points in different groups are dissimilar
- Similarity graph G=(V,E)

(undirected graph)

- Vertices v_i and v_j are connected by a weighted edge if their similarity is above a given threshold
- GOAL: find a partition of the graph such that:
 - edges within a group have high weights
 - edges across different groups have low weights

Weighted adjacency matrix

- Let G(V,E) be an undirected graph with vertex set $V = \{v_1, ..., v_n\}$
- Weighted adjacency matrix $W = (w_{ij})_{i,j=1,...,n}$
 - $w_{ij} \ge 0$ is the weight of the edge between v_i and v_j
 - $w_{ij}=0$ means that v_i and v_j are not connected by an edge
 - $W_{ij} = W_{ji}$
- Degree of a vertex $v_i \in V$: $d_i = \sum_{j=1..n} w_{ij}$
- **Degree matrix** $D = diag(d_1, ..., d_n)$

Different similarity graphs

- ε-neighborhood
 - Connect all points whose pairwise distance is less than ε
- k-nearest neighbors
 - if $v_i \in knn(v_j)$ **OR** $v_j \in knn(v_j)$
 - if $v_i \in knn(v_i)$ **AND** $v_i \in knn(v_i)$ (mutual knn)
 - after connecting edges, use similarity as weight
- fully connected
 - all points with similarity $s_{ii} > 0$ are connected
 - To control neighborhoods to be *local*, use a similarity function like the **Gaussian**: $s(x_i, x_j) = exp(-||x_i, x_j||^2/(2\sigma^2))$

Graph Laplacians

• Graph Laplacian:

- L = D W (symmetric and positive semi-definite)
- Properties
 - Smallest eigenvalue $\lambda_1 = 0$ with eigenvector = 1
 - *n* non-negative, real-valued eigenvalues $0 = \lambda_1 \le \lambda_2 \le \dots \le \lambda_n$
 - the multiplicity k of the eigenvalue 0 of L equals the number of connected components A₁,...,A_k in the graph

Spectral Clustering algorithm (1)

Spectral Clustering algorithm

Input: Similarity matrix $S \in \mathbb{R}^{n \times n}$, number *k* of clusters to construct.

- 1. Construct a similarity graph as previously described. Let W be its weighted adjacency matrix.
- **2**. Compute the unnormalized Laplacian L
- **3.** Compute the first k eigenvectors u_1, \ldots, u_k of L
- **4.** Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \dots, u_k as columns
- 5. For i=1,...,n let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U
- 6. Cluster the points $(y_i)_{i=1,...,n}$ in \mathbb{R}^k with the k-means algorithm into clusters $C_1,...,C_k$.

Output: Clusters $A_{1'}, \dots, A_k$ with $A_i = \{j \mid y_j \in C_i\}$.

Normalized Graph Laplacians

- Normalized graph Laplacians
 - Symmetric: $L_{sym} = D^{-1/2}LD^{-1/2} = I D^{-1/2}WD^{-1/2}$
 - Random Walk: $L_{rw} = D^{-1}L = I D^{-1}W$
- Properties
 - λ is an eigenvalue of $L_{_{rw}}$ with eigenvector u iff λ is an eigenvalue of $L_{_{sym}}$ with eigenvector $w=D^{1/2}u$
 - λ is an eigenvalue of L_{rw} with eigenvector u iff λ and u solve the **generalized eigenproblem** $Lu = \lambda Du$

Normalized Graph Laplacians

- Normalized graph Laplacians
 - Symmetric: $L_{sym} = D^{-1/2}LD^{-1/2} = I D^{-1/2}WD^{-1/2}$
 - Random Walk: $L_{rw} = D^{-1}L = I D^{-1}W$
- Properties (follow)
 - *0* is an eigenvalue of $L_{_{TW}}$ with 1 as eigenvector, and an eigenvalue of $L_{_{SVM}}$ with eigenvector $D^{1/2}$ 1.
 - L_{sym} and L_{rw} are positive semi-definite and have *n* nonnegative, real-valued eigenvalues $0=\lambda_1 \le \lambda_2 \le ... \le \lambda_n$
 - the multiplicity k of the eigenvalue 0 of both L_{sym} and L_{rw} equals the number of connected components A_1, \dots, A_k

Spectral Clustering algorithm (2)

Normalized Spectral Clustering

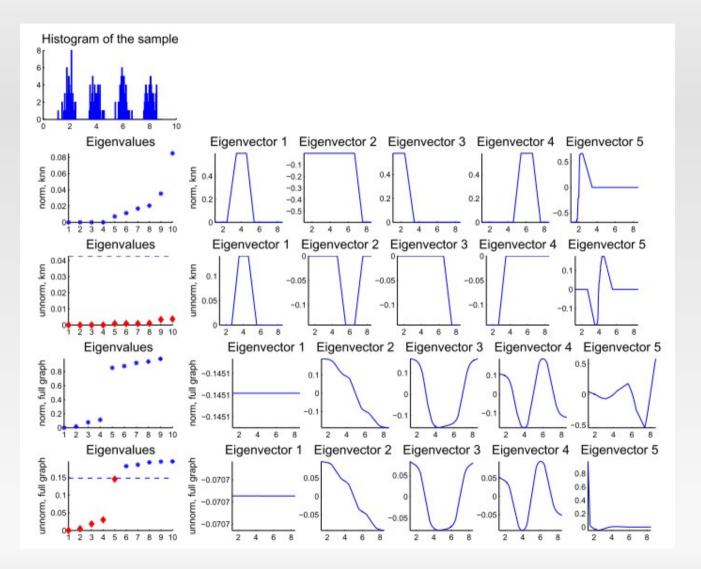
```
Input: Similarity matrix S \in \mathbb{R}^{n \times n}, number k of clusters to construct.
```

- *L_{rw}*:
 - **3**. Compute the first *k* **generalized** eigenvectors $u_1, ..., u_k$ of the generalized eigenproblem $Lu = \lambda Du$
- L_{sym} :
 - **2.** Compute the **normalized** Laplacian L_{sym}
 - **3.** Compute the first k eigenvectors u_1, \ldots, u_k of L_{sym}
 - 4. normalize the eigenvectors

Output: Clusters A_1, \dots, A_k with $A_i = \{j \mid y_i \in C_i\}$.

14/05/2013

A spectral clustering example



14/05/2013

Notes on Spectral Clustering and Joint Diagonalization

Under the hood

- 0-eigenvalues in the ideal case
- parameters are crucial:
 - k in k nearest neighbors
 - σ in Gaussian kernel
 - k (another one!) in k-means

Random Walk point of view

- Random walk: stochastic process which randomly jumps from one vertex to another
 - Clustering: finding a partition such that a random walk stays long within a cluster and seldom jumps between clusters
- Transition probability $p_{ii} = w_{ij}/d_i$
- Transition matrix: $P = D^{-1}W = > L_{rw} = I P$
 - λ is an eigenvalue of $L_{_{TW}}$ with eigenvector u iff 1λ is an eigenvalue of P with eigenvector u

Random Walk point of view

- Random walk: stochastic process which randomly jumps from one vertex to another
 - Clustering: finding a partition such that a random walk stays long within a cluster and seldom jumps between clusters
- Transition probability $p_{ii} = w_{ij}/d_i$
- Transition matrix: $P = D^{-1}W = > L_{rw} = I P$
 - λ is an eigenvalue of $L_{_{TW}}$ with eigenvector u iff 1λ is an eigenvalue of P with eigenvector u

References

 Von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics and Computing, 17(4), 395-416. Springer.

Thanks for your attention!

Questions?

14/05/2013

Notes on Spectral Clustering and Joint Diagonalization