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Talk outline

 Spectral Clustering
 Distances and similarity graphs
 Graph Laplacians and their properties
 Spectral clustering algorithms
 SC under the hood
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Similarity graph

 The objective of a clustering algorithm is partitioning 
data into groups such that:

 Points in the same group are similar
 Points in different groups are dissimilar

 Similarity graph G=(V,E)                       (undirected graph)

 Vertices v
i
 and v

j
 are connected by a weighted edge if their 

similarity is above a given threshold
 GOAL: find a partition of the graph such that: 

 edges within a group have high weights 
 edges across different groups have low weights
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Weighted adjacency matrix

 Let G(V,E) be an undirected graph with vertex set 
V={v

1
,...,v

n
}

 Weighted adjacency matrix W=(w
ij 
)

i,j=1,...,n

 w
ij
≥0 is the weight of the edge between v

i
 and v

j

 w
ij
=0 means that v

i
 and v

j
 are not connected by an edge

 w
ij
=w

ji

 Degree of a vertex v
i
∈V:      d

i
=∑

j=1..n
w

ij

 Degree matrix D=diag(d
1
,...,d

n
)
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Different similarity graphs

 ε-neighborhood 
 Connect all points whose pairwise distance is less than ε

 k-nearest neighbors

 if v
i 
∈ knn(v

j
) OR v

j 
∈ knn(v

i
)

 if v
i 
∈ knn(v

j
) AND v

j 
∈ knn(v

i
)                         (mutual knn)

 after connecting edges, use similarity as weight

 fully connected

 all points with similarity s
ij
>0 are connected

 To control neighborhoods to be local, use a similarity 
function like the Gaussian: s(x

i
,x

j
)=exp(-║x

i
-x

j
║2/(2σ2)) 
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Graph Laplacians

 Graph Laplacian:
 L = D – W                   (symmetric and positive semi-definite)

 Properties

 Smallest eigenvalue λ
1
=0 with eigenvector = �

 n non-negative, real-valued eigenvalues 0=λ
1
≤λ

2
≤...≤λ

n

 the multiplicty k of the eigenvalue 0 of L equals the number 
of connected components A

1
,...,A

k
 in the graph 
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Spectral Clustering algorithm (1)

Spectral Clustering algorithm

Input: Similarity matrix S ∈ ℝn×n, number k of clusters to construct.

1. Construct a similarity graph as previously described. Let W be its 
weighted adjacency matrix.

2. Compute the unnormalized Laplacian L

3. Compute the first k eigenvectors u
1
,…,u

k
 of L

4. Let U ∈ ℝn×k be the matrix containing the vectors u
1
,…,u

k
 as columns

5. For i=1,...,n let y
i
 ∈ ℝk be the vector corresponding to the i-th row of U

6. Cluster the points (y
i
)

i=1,...,n
 in ℝk with the k-means algorithm into clusters 

C
1
,...,C

k
.

Output: Clusters A
1
,...,A

k
 with  A

i
= {j | y

j
 ∈ C

i
}.
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Normalized Graph Laplacians

 Normalized graph Laplacians

 Symmetric: L
sym

=D-1/2LD-1/2 = I-D-1/2WD-1/2

 Random Walk: L
rw

=D-1L=I-D-1W

 Properties

 λ is an eigenvalue of L
rw

 with eigenvector u iff λ is an 

eigenvalue of L
sym

 with eigenvector w=D1/2u

 λ is an eigenvalue of L
rw

 with eigenvector u iff λ and u solve 

the generalized eigenproblem Lu=λDu
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Normalized Graph Laplacians

 Normalized graph Laplacians

 Symmetric: L
sym

=D-1/2LD-1/2 = I-D-1/2WD-1/2

 Random Walk: L
rw

=D-1L=I-D-1W

 Properties (follow)

 0 is an eigenvalue of L
rw

 with � as eigenvector, and an 

eigenvalue of L
sym 

with eigenvector D1/2�.

 L
sym

 and L
rw

 are positive semi-definite and have n non-

negative, real-valued eigenvalues 0=λ
1
≤λ

2
≤...≤λ

n

 the multiplicty k of the eigenvalue 0 of both L
sym

 and L
rw

 

equals the number of connected components A
1
,...,A

k
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Spectral Clustering algorithm (2)

Normalized Spectral Clustering

Input: Similarity matrix S ∈ ℝn×n, number k of clusters to construct.

 L
rw

:

3. Compute the first k generalized eigenvectors u
1
,…,u

k
 of the generalized 

eigenproblem Lu=λDu

 L
sym

:

2. Compute the normalized Laplacian L
sym

3. Compute the first k eigenvectors u
1
,…,u

k
 of L

sym

4. normalize the eigenvectors

Output: Clusters A
1
,...,A

k
 with  A

i
= {j | y

j
 ∈ C

i
}.
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A spectral clustering example
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Under the hood

 0-eigenvalues in the ideal case

 parameters are crucial:
 k in k nearest neighbors

 σ in Gaussian kernel

 k (another one!) in k-means
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Random Walk point of view

 Random walk: stochastic process which randomly 
jumps from one vertex to another

 Clustering: finding a partition such that a random walk stays 
long within a cluster and seldom jumps between clusters

 Transition probability p
ij
:=w

ij
/d

i

 Transition matrix: P = D-1W     =>     L
rw

= I - P

 λ is an eigenvalue of L
rw

 with eigenvector u iff 1-λ is an 

eigenvalue of P with eigenvector u
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Random Walk point of view
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Thank you!

Thanks for your attention!

Questions?
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