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Course Schedule [Tentative]

Date Topic

07/05/2012 Clustering I: Introduction, K-means

14/05/2012 Clustering II: K-M alternatives, Hierarchical, SOM

21/05/2012 Clustering III: Mixture of Gaussians, DBSCAN, J-P

28/05/2012 Clustering IV: Spectral clustering, evaluation measures
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Lecture outline

• Gaussian Mixtures
• DBSCAN
• Jarvis-Patrick
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Mixture of Gaussians
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Clustering as a Mixture of Gaussians

• Gaussians Mixture is a model-based clustering approach
◦ It uses a statistical model for clusters and attempts to

optimize the fit between the data and the model.
◦ Each cluster can be mathematically represented by a

parametric distribution, like a Gaussian (continuous) or a
Poisson (discrete)

◦ The entire data set is modelled by a mixture of these
distributions

• A mixture model with high likelihood tends to have the following
traits:
◦ Component distributions have high "peaks" (data in one

cluster are tight)
◦ The mixture model "covers" the data well (dominant

patterns in data are captured by component distributions)
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Advantages of Model-Based Clustering

• well studied statistical inference techniques available
• flexibility in choosing the component distribution
• obtain a density estimation for each cluster
• a "soft" classification is available
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Mixture of Gaussians

It is the most widely used model-based clustering method: we can
actually consider clusters as Gaussian distributions centered on
their barycentres (as we can see in the figure, where the grey circle
represents the first variance of the distribution).
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How does it work?

• it chooses the component (the Gaussian) at random with
probability P (ωi)

• it samples a point N(µi, σ
2I)

◦ Let’s suppose we have x1, x2, . . . , xn and
P (ω1), . . . , P (ωK), σ

◦ We can obtain the likelihood of the sample:
P (x|ωi, µ1, µ2, . . . , µK) (probability that an observation from
class ωi would have value x given class means µ1, . . . , µK)

◦ What we really want is to maximize P (x|µ1, µ2, . . . , µK)

... Can we do it? How?

(let’s first look at some examples on Expectation Maximization...)
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The Algorithm

The algorithm is composed of the following steps:
1. Initialize parameters:

λ0 = {µ
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where p
(t)
i is shorthand for P (ωi) at t-th iteration
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Mixture of Gaussians Demo

Time for a demo!
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Question

What if we had a dataset like this?
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DBSCAN

• Density Based Spatial Clustering of Applications with Noise
◦ Data points are connected through density

• Finds clusters of arbitrary shapes
• Handles well noise in the dataset
• Single scan on all the elements of the dataset
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DBSCAN: background

• Two parameters to define density:
◦ Eps: radius
◦ MinPts: minimum number of points within the specified

radius
• Number of points within a specified radius:

◦ NEps(p) : {q ∈ D|dist(p, q) ≤ Eps}
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DBSCAN: background

• A point is a core point if it has more than MinPts points within Eps

• A border point has fewer than MinPts within Eps, but is in the neighborhood of a
core point

• A noise point is any point that is not a core point or a border point.
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DBSCAN: core, border and noise points

Eps = 10, MinPts = 4
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DBSCAN: background

• A point p is directly density-reachable from q with respect to
(Eps,MinPts) if:
1. p ∈ NEps(q)

2. q is a Core point
(the relation is symmetric for pairs of core points)

• A point p is density-reachable from q if there is a chain of
points p1, . . . , pn (where p1 = q and pn = p) such that pi+1 is
directly density-reachable from pi for every i

◦ (two border points might not be density-reachable)
• A point p is density-connected to q if there’s a point o such

that both p and q are density-reachable from o

◦ (given two border points in the same cluster C, there must
be a core point in C from which both border points are
density-reachable)
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DBSCAN: background

• Density-based notion of a cluster:
◦ a cluster is defined to be a set of density-connected points

which is maximal wrt. density-reachability
◦ Noise is simply the set of points in the dataset D not

belonging to any of its clusters
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DBSCAN algorithm

• Eliminate noise points
• Perform clustering on the remaining points
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DBSCAN evaluation

• CLARANS, a K-Medoid algorithm, compared with DBSCAN
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When DBSCAN works well

• Resistant to noise
• Can handle clusters of different shapes and sizes
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Clustering using a similarity measure

• R.A. Jarvis and E.A. Patrick, 1973
• Many clustering algorithms are biased towards finding globular

clusters. Such algorithms are not suitable for chemical
clustering, where long "stringy" clusters are the rule, not the
exception.

• To be effective for clustering chemical structures, a clustering
algorithm must be self-scaling, since it is expected to find both
straggly, diverse clusters and tight ones

• => Cluster data in a nonparametric way, when the globular
concept of a cluster is not acceptable

– p. 21/32



Jarvis-Patrick
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Jarvis-Patrick

• Let x1, x2, . . . , xn be a set of data vectors in an L-dimensional
Euclidean vector space

• Data points are similar to the extent that they share the same
near neighbors
◦ In particular, they are similar to the extent that their

respective k nearest neighbor lists match
◦ In addition, for this similarity measure to be valid, it is

required that the tested points themselves belong to the
common neighborhood

– p. 23/32



Jarvis-Patrick

Automatic scaling of neighborhoods (k=5)
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Jarvis-Patrick

“Trap condition” for k=7: Xi belongs to Xj ’s neighborhood, but not
vice versa.
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JP algorithm

1. for each point in the dataset, list the k nearest neighbors by
order number. Regard each point as its own zeroth neighbor.
Once the neighborhood lists have been tabulated, the raw data
can be discarded.

2. Set up an integer label table of length n, with each entry initially
set to the first entry of the corresponding neighborhood row.

3. All possible pairs of neighborhood rows are tested as follows:
replace both label entries by the smaller of the two existing
entries if both 0th neighbors are found in both neighborhood
rows and at least kt neighbor matches exist between the two
rows. Also, replace all appearances of the higher label
(throughout the entire label table) with the lower label if the
above test is successful.

4. The clusters under the k, kt selections are now indicated by
identical labeling of the points belonging to the clusters.
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JP algorithm
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JP: alternative approaches

Similarity matrix

– p. 28/32



JP: alternative approaches

Hierarchical clustering - dendrogram

– p. 29/32



JP: conclusions

Pros:
• The same results are produced regardless of input order
• The number of clusters is not required in advance
• Parameters k, kt can be adjusted to match a particular need
• Auto scaling is built into the method
• It will find tight clusters embedded in loose ones
• It is not biased towards globular clusters
• The clustering step is very fast
• Overhead requirements are relatively low

Cons:
• it requires a list of near neighbors which is computationally

expensive to generate
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Bibliography

• Clustering with gaussian mixtures
Andrew W. Moore

• Clustering Using a Similarity Measure Based on Shared Near
Neighbors (paper here)

• A Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise (paper here)
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• The end
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