Loiversita e MSc in Communication Sciences 2011-12

e era e Program in Technologies for Human Communication I N te rn et Tec h no I Og y

italiana

Davide Eynard

13 - RDFS and SPARQL

RDF - Summary

Main characteristics of RDF:

" Abstract syntax based on triples (subj-pred-obj)

" The data model is a graph, instead of a tree

" Resources (identified by URIs) vs literals (xsd datatypes)

Building patterns:
® Blank nodes
® Reification

Serializations
" RDF/XML, N3 family, RDFa

® NOTE: RDF-ser-RDF returns the original RDF, while
ser-»RDF-ser does not necessarily return the same

serialization!

Explicit reification

Shakespeare wrote Hamlet

lit:Shakespeare lit:wrote lit:Hamlet

lit:Hamlet lit:author lit:Shakespeare

Shakespeare wrote Hamlet in 1601

bio:nl bio:author lit:Shakespeare ;
bio:title "Hamlet" ;
bio:publicationDate 1601

Wikipedia says that Shakespeare wrote Hamlet

g:nl rdf:subject lit:Shakespeare ;
rdf:predicate lit:wrote ;
rdf:object lit:Hamlet

web:Wikipedia m:says g:nl

RDF Schema

RDF Schema is a semantic extension of RDF which defines
classes and properties that may be used to describe classes,
properties and other resources

RDFS provides mechanisms for describing groups of related
resources and the relationships between these resources

RDFS vocabulary descriptions are written in RDF
® Similar to XML Schema wrt XML

Similarities with OOP

" No real inheritance, but subclassing (an instance of a
subclass is also an instance of the parent class)

® Nothing similar to method override

RDF Schema defines meaning in terms of possible inferences

RDF Schema

Just as Semantic Web modeling in RDF is about graphs,

Semantic Web modeling in the RDF Schema Language (RDFS)
is about sets.

What do we gain by specifying explicitly that something is a
set?
® We gain a description of the meaning of membership in a
set
How can we specify what we mean by set membership?

" In RDFS, we express meaning through the mechanism of
inference

Classes

" rdfs:Resource
rdfs:Class
rdfs:Literal
rdfs:Datatype
rdf: XMLLiteral
rdf:Property

Reification vocabulary

rdf:Statement
rdf:subject
rdf:predicate
rdf:object

RDF Schema at a glance

Properties

rdfs:domain
rdfs:range

rdf:type
rdfs:subClassOf
rdfs:subPropertyOf
rdfs:label
rdfs:comment

Utility properties

rdfs:SeeAlso
rdfs:isDefinedBy
rdf:value

Type and Relationship propagation

rdfs:subClassOf
If we have triples of the form

A rdfs:subClassOf B.
r rdf:type A.

then we can infer

r rdf:type B.

rdfs:subPropertyOf

If we have triples of the form
P rdfs:subPropertyOf R.

then, if we have the triple “a P b”, we can mfer
a R b.

Typing data

rdfs:domain

IF

P rdfs:domain D
and

X Py

THEN

X rdf:type D

@ MarriedWoman

Bl ha=Maidenhame
rdfs:domain

rdfs:range

IF

P rdfs:range R
Shelel

X Py

THEN

y rdf:type R

RDF validation

In RDFS, there is no way to assert that a particular individual
is not a member of a particular class

® no notion of an incorrect or inconsistent inference
Unlike the case of XML Schema, an RDF Schema will never

proclaim an input as invalid; it will simply infer appropriate
type information

Set intersection

C rdfs:subClassOf A.
C rdfs:subClassOf B.
X rdf:type C.

Then:

x rdf:type B.
x rdf:type A.

Property intersection
:lodgedIn rdfs:subPropertyOf
:1logdedIn rdfs:subPropertyOf
:Marcus :lodgedIn :RoomlO1.
Then:

:Marcus :billedFor :RoomlO1.

RDFS modeling: intersection

:billedFor.
:assignedTo.

:Marcus :assignedTo :RoomlO1.

RDFS modeling: union

Set union

A rdfs:subClassOf C
B rdfs:subClassOf C

Writing “x rdf:type A .” or “x rdf:type B .” 1mplies:

X rdf:type C

Property union

P rdfs:subPropertyOf R.
Q rdfs:subPropertyOf R.

Writing “x Py .” or “x Q y .” implies:

X Ry

Non-modeling properties

rdfs:label
® provides a readable/printable name for any resource

rdfs:seeAlso
¥ used for cross-referencing

rdfs:isDefinedBy

" provides a link to the primary source of information about
a resource. This allows modelers to specify where the
definitional description of a resource can be found

" rdfs:subPropertyOf of rdfs:seeAlso.

rdfs:comment
® model documentation

SPARQL by example

SPARQL is a recursive acronym that stands for SPARQL
Protocol And RDF Query Language

Features:

" Graph patterns

Optional values

Matching alternatives

Multiple RDF graphs as data sources

ORDER BY, DISTINCT, OFFSET, LIMIT

Filters on returned values

Let's try it! Go to http://sparqgl.org

http://sparql.org/

Our first SPARQL query

Go to http://www.spargl.org/query.html and type the
following:

PREFIX books: <http://example.org/book/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX vcard: <http://www.w3.0rg/2001/vcard-rdf/3.0#>
SELECT 7?s ?p 20

WHERE

{ ?s ?p 20 }

The meaning is (after a sequence of namespace declarations):
= for all the triples “subject — predicate — object”
" show me the subject, the predicate, and the object

?s, ?p, and ?o are variables that are filled with the results that
satisfy your query (in this case, all the triples in the graph)

Use the construct option to create an RDF you can validate
and display using the W3C validation service!

http://www.sparql.org/query.html

SPARQL queries

Another basic query:

PREFIX books: <http://example.org/book/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?book ?title

WHERE

{ ?book dc:title ?title .
?book dc:creator "J.K. Rowling"

}

It reads like follows:
® there is a ?book whose title is ?title
" the same ?book has a creator which is "J.K. Rowling”

" show me the list of book-title pairs you have (that is, give
me all the books by J.K. Rowling)

NOTE: SPARQL builds a graph out of your query and tries to
match it with the data inside the KB

SPARQL queries with anonymous nodes

A more complex query on the books dataset:

PREFIX books: <http://example.org/book/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX vcard: <http://www.w3.0rg/2001/vcard-rdf/3.0#>
SELECT DISTINCT 7“name

WHERE

{ ?s dc:creator 7?0
70 vcard:N ?n
?n vcard:Given ?name

}

It reads like follows:

there is a ?s whose creator is 70

this 20 has a full name which is ?n

¥ this ?n has a first/given name which is ?name
® show me all the distinct ?names you have

SPARQL queries with OPTIONAL clause

PREFIX books: <http://example.org/book/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?book ?title

WHERE

{ ?book dc:title ?title
?book dc:creator "J.K. Rowling"

}

What if there are books for which the creator has not been
specified? Check the difference:

PREFIX books: <http://example.org/book/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>
SELECT ?book ?title

WHERE

{ ?book dc:title ?title
optional {?book dc:creator "J.K. Rowling"}

SPARQL queries with anonymous nodes

A more complex query on the books dataset:

PREFIX books: <http://example.org/book/>

PREFIX dc: <http://purl.org/dc/elements/1.1/>
PREFIX vcard: <http://www.w3.0rg/2001/vcard-rdf/3.0#>
SELECT ?book ?title 7?creator

WHERE

{
{?book dc:title ?title
?book dc:creator "J.K. Rowling"}
UNION
{?book dc:title ?title
?book dc:creator ?creator
?creator vcard:FN "J.K. Rowling"}

NOTE: this technique is very useful to merge information
coming from different schemas

Changing datasets on SPARQLer

Three steps:
® choose “general purpose SPARQL processor”

" gspecify the target graph URI (for instance, try with
http://rdf.freebase.com/rdf/en.arnold_schwarzenegger)

" write a query, for instance:

PREFIX fb: <http://rdf.freebase.com/ns/>
select ?film
where {

?s fb:film.performance.film ?film

}

NOTE: to get the name of the properties, you can always send
an SPO (?s ?p ?0) query!

http://rdf.freebase.com/rdf/en.arnold_schwarzenegger

More advanced queries on Freebase data

Get the list of movies and the characters:

PREFIX fb: <http://rdf.freebase.com/ns/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

select ?filmtitle ?character

where {
?film a fb:film.performance
?film fb:film.performance.film ?filmtitle
?film fb:film.performance.character 7?character

Get the list of related webpages:

PREFIX fb: <http://rdf.freebase.com/ns/>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

select 2o

where {
?s fb:common.webpage.uri 2?0

References

Some Web references:
® RDF Primer: http://www.w3.0rg/TR/REC-rdf-syntax
® RDF Schema: http://www.w3.org/TR/rdf-schema

® Dean Allemang, Jim Hendler: “"Semantic Web for the Working Ontologist”.
http://workingontologist.org

Tools:
® W3C RDF Validator: http://www.w3.org/RDF/Validator
® Morla RDF editor: http://www.morlardf.net

http://www.w3.org/TR/REC-rdf-syntax
http://www.w3.org/TR/rdf-schema
http://workingontologist.org/
http://www.w3.org/RDF/Validator
http://www.morlardf.net/

	
	Pagina 2
	Pagina 3
	Pagina 4
	Pagina 5
	Pagina 6
	Pagina 7
	Pagina 8
	Pagina 9
	Pagina 10
	Pagina 11
	Pagina 12
	Pagina 13
	Pagina 14
	Pagina 15
	Pagina 16
	Pagina 17
	Pagina 18
	Pagina 19
	Pagina 20
	Pagina 21

