
1

2

Politecnico di Milano

Dipartimento di Elettronica e Informazione

Dottorato di Ricerca in Ingegneria dell’Informazione

A Virtuous Cycle of Semantics

and Participation

Tesi di dottorato di:

Davide Eynard

Relatore:
Prof. Marco Colombetti

Tutore:
Prof. Andrea Bonarini

Coordinatore del programma di dottorato:
Prof. Patrizio Colaneri

XXI ciclo - 2009

Politecnico di Milano

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32 I 20133 — Milano

Politecnico di Milano

Dipartimento di Elettronica e Informazione

Dottorato di Ricerca in Ingegneria dell’Informazione

A Virtuous Cycle of Semantics

and Participation

Doctoral Dissertation of:

Davide Eynard

Advisor:
Prof. Marco Colombetti

Tutor:
Prof. Andrea Bonarini

Supervisor of the Doctoral Program:
Prof. Patrizio Colaneri

XXI edition - 2009

Politecnico di Milano

Dipartimento di Elettronica e Informazione
Piazza Leonardo da Vinci 32 I 20133 — Milano

Preface

On July, 3rd 1998, thanks to the recent birth of one of the very first
free Web space providers, the dream of a read-write Web [56] finally
became true for a (then) young computer engineering student, without
him even knowing what a read-write Web was. A brand new website,
containing just a collection of hacking and reverse-engineering related
links was born.

On September, 7th 1999, the Perl programming language entered the
life of that guy, and the website took advantage of the power of CGIs [61]
to make its links dynamic: nobody knew what a folksonomy was, and
metadata were just plain text reviews... But anyone could add new links
to that site without being its webmaster, as it had been made read-write
for them. Of course, almost nobody contributed.

On November, 2nd 2000, LAMP [159] (even if nobody knew what
LAMP meant at that time) entered the life of that guy, and the website
took advantage of the power of the PHP language and databases to
evolve. Not just links anymore, but also a game: the site opened only
for those few who were able to solve a riddle at its entrance; inside it
there was a game, which allowed to advance level and get new resources
whenever a riddle was solved. A community was born, even if the guy
just used to call them +friends.

On April, 23rd 2001, a forum system was added to the website. Less
than six hours later the first feedback message arrived. One week later,
the first request: players wanted their rankings to be published. Incen-
tives in the form of gratification entered the game.

In June, 2001, the first suggestions arrived through the forum. Users
wanted to contribute in making the website better, giving their personal
comments about the riddles, notifying bugs and errors, and requesting
new features.

On September, 7th 2001, riddle number 5 appeared on the website: it
was the first one created by a user [28].

The rest is history1: http://3564020356.org has 28 levels, each one

1Actually, Web history: everything can be found online on the Internet Archive’s
Wayback Machine, searching for the URLs http://malattia.cjb.net and http:

//3564020356.org.

i

with a riddle and a forum, and more than 20000 users. It has no ad-
vertisement and no spam, and most of its contents are not indexed by
any search engine, as to enter it you still have to solve that first riddle.
Nevertheless, the website still has around 2000 visits per month, even if
it was officially frozen in 2005.

As one of the main rules of the game was “solve the riddles, no matter
how you do it”, during its life the website has been attacked many times
by its own players: every time a security hole was exploited, players used
to send a brief explaination of how they cracked it so that the problem
could be fixed and everyone else could learn something new out of it. In
August, 2008, after years without new riddles, some users tried to exploit
a bug in the website to gain full access on the server and... publish new
riddles. Now, nothing can stop them from playing and learning.

356, as I like to call it, still means very much to me. It has always been
there, looking at the world while it was changing. It survived the dot-
com bubble, actually being a dot-nothing at that time2. It changed place
many times, starting with old tower PCs, moving to racks and finally
retiring in a virtual machine. It saw generations of searchers and reverse-
engineers playing with it, actually the most fair community I have ever
seen. It was pure fun, participation, collaboration and self-moderation.

And I still haven’t understood why it worked so damn well.

Acknowledgements

My eternal gratitude and love go first of all to Elena and my family,
for the patience they all had when I spent more time with the Semantic
Web than with them. Then: my advisor, prof. Marco Colombetti, and
my tutor, prof. Andrea Bonarini, for all the support they always gave
and still give me. Dr. Sebastian Schaffert, the reviewer of this thesis, for
his precious suggestions and the time he devoted to read the whole thing
(with the hope he is not going to be the only one). My dear colleagues at
DEI and HPL, as working with them has always been a great experience.
And last but not least, all those friends who have shared in some way
this experience with me, as your support and chats and whatever kind of
more or less dangerous activity I have performed with you was precious
to me. If you happen to belong to more than one of the aforementioned
sets, please consider my acknowledgements as many times.

2The original url, which is also the reason of its weird domain name, was just
http://3564020356.

ii

Abstract

Participative systems are a particular class of social systems, in which
people can interact, share information, or both. What characterizes them
is not just a passive presence of users, but the fact that they actually
“take part” into some activity, providing new value to the community
thanks to their explicit or implicit contributes.

These systems have gained a great consensus both inside corporations
and on the World wide web, and have become particularly interesting not
only as a possibly successful business, but also as an object of academic
research. In fact, as they deal at the same time with technologies and
people, they present a plethora of interesting research problems that can
be studied from the point of views of many different sciences.

The main objective of our research project is to study participative
systems and the possibility to enhance them through semantics. We be-
lieve that the advantages of a contamination between these systems and
Semantic Web technologies could be twofold: on the one hand, the huge
quantity of information created by the participation of many users could
be better managed and searched thanks to added semantics; on the other
hand, Semantic Web community could exploit spontaneous participation
to increase the amount of knowledge described through formal represen-
tations, making it available to many other applications. Following the
double nature of this research (the social and the technological one) our
research question is split in two: given a community, a task and a con-
text, we want to understand (i) what is the most suitable tool to foster
user participation and produce useful information, and (ii) how we could
employ semantics to make this better.

Our effort in this project has been to find both the technical insights
and the design paradigms to choose the best participative system for
a particular community and its activity, or evaluate the health of an
existing one, and address part of its limitations using Semantic Web
technologies (after recognizing if it is possible in the first place). As a
result, we provide a set of suggestions and patterns which can be used
to bootstrap or fine tune a social system. To this knowledge we add
the results of our experimentations on semantic participative systems.
We describe how two of the main tools to manage semantics, that is

iii

ontologies and reasoners, could be exploited to provide enhanced user
interfaces for information visualization and consumption; we show how
intrinsic limits in classification which depend on the ambiguity of En-
glish words could be addressed by semantic disambiguation techniques;
finally, we show the advantages of sharing information as linked data
in email servers and browser history, and how to use already available
open information to make the browsing experience better and act as an
incentive for user participation in collective activities.

iv

Sommario

Quella dei sistemi partecipativi è una particolare classe di sistemi sociali
all’interno dei quali è possibile interagire e condividere informazioni. A
caratterizzarli non è una semplice presenza passiva degli utenti, ma il
fatto che questi “prendono parte” a tutti gli effetti a una qualche attività,
portando nuovo valore alla comunità grazie ai loro contributi espliciti o
impliciti.

Questi sistemi hanno ottenuto un grande consenso sia in ambito azien-
dale che nel World Wide Web e risultano particolarmente interessanti non
solo in quanto possibili business di successo ma anche come oggetti di
studio accademico. Essi, infatti, basandosi allo stesso tempo sia su nuove
tecnologie sia sulle persone che vi partecipano, presentano una grande
quantità di problemi di ricerca interessanti che possono essere affrontati
dai punti di vista di discipline differenti.

L’obiettivo principale di questo progetto di ricerca è lo studio dei si-
stemi partecipativi e la possibilità di migliorarli attraverso la semantica.
Siamo infatti convinti che i vantaggi di una contaminazione fra questi
sistemi e le tecnologie del Semantic Web possano essere duplici: da un
lato, l’enorme quantità di informazioni generate dalla partecipazione di
diversi utenti può essere gestita in modo più efficace grazie all’aggiunta di
semantica; dall’altro, la comunità del Semantic Web potrebbe sfruttare
la partecipazione spontanea per aumentare la quantità di conoscenza de-
scritta tramite rappresentazioni formali e renderla disponibile a diverse
applicazioni. Seguendo la duplice natura di questa ricerca (quella sociale
e quella tecnologica), ci siamo ritrovati a rispondere a due domande: data
una comunità, un compito da portare a termine e un contesto, deside-
riamo sapere (i) qual è il migliore strumento per sfruttare la parteci-
pazione degli utenti in modo da produrre delle informazioni utili e (ii)
come potremmo rendere questo strumento migliore attraverso l’uso della
semantica.

Il nostro sforzo principale in questo progetto è stato diretto a trovare
dei paradigmi tecnici e progettuali che ci permettessero, da un lato, di
scegliere il miglior sistema partecipativo per una particolare comunità
e la sua attività (o valutarne uno esistente), dall’altro di compensare
parte dei suoi limiti grazie alle tecnologie del Semantic Web (dopo aver

v

riconosciuto, in primo luogo, se questo fosse possibile). Il risultato è una
raccolta di suggerimenti e regole per la creazione o la correzione di un
sistema sociale. A queste informazioni aggiungiamo i risultati dei no-
stri esperimenti su sistemi partecipativi semantici: mostriamo come due
degli strumenti principali per la semantica, cioè le ontologie e i reasoner,
possono essere utilizzati per fornire all’utente delle interfacce avanzate
per la visualizzazione e la gestione delle informazioni; spieghiamo come i
limiti intrinseci nella classificazione che dipendono dalle ambiguità lessi-
cali possono essere aggirati tramite tecniche di disambiguazione seman-
tica; infine, descriviamo i vantaggi ottenuti dalla condivisione delle infor-
mazioni come Linked Data in strumenti comuni come i server di posta
e i browser, e mostriamo come sia possible utilizzare informazioni già
condivise su Internet per migliorare l’esperienza di navigazione e fornire
incentivi alla partecipazione in attività collettive.

vi

Contents

1 Introduction 1

1.1 Motivations . 1
1.2 Objectives . 4
1.3 Novel contributions . 5
1.4 Structure of this document 7

2 Background 9

2.1 Social systems . 9
2.1.1 Creating and publishing 11
2.1.2 Communicating . 16
2.1.3 Sharing . 19
2.1.4 Recommending . 22
2.1.5 Coordinating . 23
2.1.6 Networking . 24
2.1.7 Playing . 27

2.2 Taxonomy of participation 27
2.3 Basic concepts of social interactions 30

2.3.1 Wisdom of the crowds 30
2.3.2 Motivations and incentives 31
2.3.3 Communities of practice 33
2.3.4 Activity theory . 36

2.4 Participation and semantics 38
2.4.1 Wiki systems . 38
2.4.2 Folksonomies . 43

2.5 Technologies . 45
2.5.1 The Semantic Web 45
2.5.2 Tools . 50
2.5.3 Datasets . 53

3 Our approach 57

3.1 Designing a participative system 57
3.1.1 User-centered design 58
3.1.2 Dimensions of participative systems 60

vii

Contents

3.1.3 Collective intelligence and LPP 65
3.2 Extending systems with semantics 68
3.3 Architectures . 72

3.3.1 The client-server-server architecture 72
3.3.2 Wiki extensions . 73

3.4 Experimental developments 74

4 Semantic Wikis 79

4.1 A Templating System for Resource Visualization in a Se-
mantic Wiki . 79
4.1.1 Project architecture and implementation 79
4.1.2 Conclusions . 81

4.2 Semantic Management of Attachments Inside a Wiki Engine 82
4.2.1 Distillation . 83
4.2.2 Visualization and Editing 84
4.2.3 Querying . 84
4.2.4 Conclusions . 84

4.3 Design of a Context Ontology Inside a Semantic Wiki . . 86
4.3.1 Conclusions . 87

5 Folksologies 89

5.1 Using WordNet to Turn a Folksonomy Into a Hierarchy of
Concepts . 89
5.1.1 Project overview 90
5.1.2 Tag disambiguation 92
5.1.3 Building the tag semantic tree 93
5.1.4 User interface . 94
5.1.5 System evaluation 96
5.1.6 Conclusions . 98

5.2 Improving Search and Navigation by Combining Ontolo-
gies and Social Tags . 99
5.2.1 Related work . 100
5.2.2 Project overview 101
5.2.3 Matching and disambiguation 102
5.2.4 Project architecture 105
5.2.5 System evaluation 107
5.2.6 Conclusions . 107

6 Linking Open Data 109

6.1 An IMAP Plugin for SquirrelRDF 109
6.1.1 Related work . 110

viii

6.1.2 Project overview 113
6.1.3 Project architecture and implementation 116
6.1.4 Software details . 121
6.1.5 Tests and evaluations 125
6.1.6 Conclusions . 128

6.2 Exploiting User Gratification for Collaborative Semantic
Annotation . 129
6.2.1 Related work . 130
6.2.2 Project overview 131
6.2.3 Project architecture and implementation 134
6.2.4 System evaluation 138
6.2.5 Conclusions . 140

6.3 Using semantics and user participation to customize per-
sonalization . 142
6.3.1 Prior work . 145
6.3.2 Our Approach . 148
6.3.3 Framework Architecture and Implementation . . . 152
6.3.4 Example plugin: del.icio.us and Google’s Motion-

Chart . 155
6.3.5 Example plugin: Freebase 158
6.3.6 Plugin Evaluation 160
6.3.7 Conclusions . 165

7 Conclusions and Future Work 169
7.1 Future Work . 171

1 Introduction

Participative systems are a particular class of social systems, in which
people can interact, share information, or both. What characterizes them
is not just a passive presence of users, but the fact that they actually
“take part” into some activity, providing value to the system thanks to
their explicit or implicit contributes.

Participative systems are widely used today, and are gaining a great
consensus both inside corporations and on the World Wide Web. Ac-
cording to Tim O’Reilly [110] while explaining the meaning of “Web 2.0”,
as applications are becoming more and more data-driven, spontaneous
user participation adds value to a system because it helps in creating
a new, unique and hard to recreate source of data. If this is evidently
true on the Web (just think about different examples such as Wikipedia,
Google Maps and Flickr1), it is—maybe surprisingly—true even inside
corporate intranets: in this case, as described in many success stories,
participative systems are welcomed not only by companies, but also by
the people who work for them, who consider these tools not only power-
ful, but also flexible enough to suit their own needs2.

1.1 Motivations

The interest towards participation has grown in the last years to the
point that almost every activity, whether it was offline or online, has
seemed to become social. Just to give an example, we now have social
news (such as in Digg or Reddit3), document writing (Google Docs4) and
sharing (Scribd, Slideshare5), software development (SourceForge6), en-

1http://www.wikipedia.org, http://maps.google.com, http://www.flickr.com.
2For instance, for an example of Wiki systems as successful participa-

tive tools inside corporations, see http://twiki.org/cgi-bin/view/Main/

TWikiSuccessStories . For a definition of Wiki, see Section 2.1.
3http://www.digg.com, http://www.reddit.com.
4http://docs.google.com.
5http://scribd.com, http://slideshare.net.
6http://www.sourceforge.net.

1

1 Introduction

Figure 1.1: Gartner’s hype cycle for Social Software, July 2008.

cyclopedias (Wikipedia, Wikia7), and multimedia (YouTube, Last.FM8).
Another sign of where the current interest is going is that Gartner9,

which every year provides a “Hype Cycle” about emerging technologies
(a report with a graphic representation of the maturity, adoption and
business application of specific technologies), in 2008 has published one
exclusively for Social Software (see Figure 1.1).

Participative systems are particularly interesting not only as a possibly
successful business, but also as an object of academic research. In fact,
as they deal at the same time with technologies and people, they present
a plethora of interesting research problems that can be studied from the
point of views of many different sciences.

For instance, psychological and social sciences study the problem of
the incentives in social systems10: users are more willing to contribute if
their participation is incentivated in some way, so a consistent part of the
designer’s work is to make the system gratifying or appealing for users.

7http://www.wikia.com.
8http://www.youtube.com, http://www.last.fm.
9http://www.gartner.com.

10The importance of incentives has been recognized even in the Semantic Web com-
munity, as shown by the presence of the first Workshop on Incentives for the
Semantic Web at the 7th International Semantic Web Conference (see http:

//km.aifb.uni-karlsruhe.de/ws/insemtive2008).

2

1.1 Motivations

From the point of view of human-computer interaction researchers, this
translates in studying new interfaces and interaction paradigms to make
systems more usable and intuitive. From a psychological point of view,
instead, the “bootstrap problem” is a pretty common one: as few users
are going to contribute to a project that still has not taken off, and as
one of the main values they rely on to judge the success of a system is
its contents, who is going to write the first critical mass of information,
large enough to act as an incentive for users who contribute?

Another open problem is related to the precision of participative sys-
tems. There is always a tradeoff between users’ freedom of action and
quality of the final data: the more open a system is, the more vulner-
able to errors, no matter if they are entered by mistake or on purpose
(as it might happen with spam). In some systems, user contribute with
ratings or evaluations of particular resources (ie. news, links and so on).
In these cases one might wonder how much these ratings can be trusted,
given that not all the contributors are field experts. To describe this
kind of dynamics James Surowiecki expresses his theory of the Wisdom
of Crowds [142], writing that “under the right circumstances, groups are
remarkably intelligent, and are often smarter than the smartest people
in them”. Applied to the Web, this democratization has had some suc-
cess, but not without drawbacks [125]: the main problem is that users’
evaluations are not unbiased, but often depend on previous ratings they
trust inconditionally (this kind of “blind trust” is well described by Jaron
Lanier in [88]); the consequence is that sometimes the decisions of few
individuals, due to a cascade effect, have a disproportionally strong effect
on the behavior of the group as a whole (like Malcolm Gladwell describes
in [57]). Of course, these aspects have to be taken into account when
designing a participative system.

Finally, even when the system works well and the user community is
engaged and active, there is a problem with data. User contributions are
often unstructured and produced just for human consumption, such as
free text, images, or videos: they lack the structure and the metadata
that would be useful for a machine to elaborate them. The result is that
users often produce huge amounts of information which, unfortunately,
is hard to find and reuse in other applications.

The Semantic Web [17] is “an extension of the current Web, in which
information is given well-defined meaning, better enabling computers
and people to work in cooperation”. Thanks to its standards and tech-
nologies, data produced by humans (no matter if in social systems or
not) could be meaningful for machines too, so that they could help us

3

1 Introduction

in searching, aggregating, and inferencing new information. It is quite
natural, then, that the Semantic Web community is becoming interested
into participation. Some consequences of this interest are the three work-
shops about Semantic Wikis held in the last years11 and the birth of the
W3C SWEO Linking Open Data community project, whose aim is to in-
crease the amount of semantic data on the Web and link them together,
also involving user participation.

1.2 Objectives

The main objective of our research project is to study participative sys-
tems and the possibility to enhance them through semantics. The ad-
vantages of a contamination between these systems and Semantic Web
technologies are twofold (see Figure 1.2): on the one hand, the huge
quantity of information created by the participation of many users can
be better managed and searched thanks to added semantics; on the other
hand, Semantic Web community can exploit spontaneous participation
to increase the amount of knowledge described through formal represen-
tations, making it available to many other applications.

Following the double nature of this research (the social and the tech-
nological one) our research question is split in two: given a community, a
task and a context (for instance, whether the community is in an intranet
or on the Internet):

1. what is the best tool that can be used to foster user participation
and exploit it to produce useful information? And

2. how can we make this tool better with semantics?

Actually, “making the tool better with semantics” still provides a very
high-level description of our research question. Studying participative
systems from different perspectives (i.e. from the point of view of Ac-
tivity Theory and Communities of Practice - see Section 2), we came
up to the conclusion that such a system might have success or not de-
pending on many different factors: for instance, the tool might not be
suited for the task, users might not be engaged, or the social dynamics of
the underlying community might be incompatible with some restrictions
imposed by the application. In these cases, even adding semantics to the
system might not be enough to make it successful.
11The first one has been held in June 2006 at the 3rd European Semantic Web

Conference, the second in August 2006 at WikiSym, and the third one in June
2008 at the 5th ESWC.

4

1.3 Novel contributions

Figure 1.2: The virtuous cycle of semantics and participation.

On the other hand, there are other cases in which Semantic Web tech-
nologies could really add value to a system. However, when researchers
or designers try to constrain information to a more formal structure,
they often experiment a clash between the top-down approach, typical
of ontologies and logical formalisms, and the bottom-up emergence of
intelligence, which is typical of participative systems. Thus, the second
point of our research question could be split in two different phases: first
of all, we want to recognize if there actually is a place for semantics in
the considered system; then, we want to find how to solve the problem
of making the tool better using semantics without limiting, but rather
fostering users’ spontaneous participation.

1.3 Novel contributions

Literature shows many examples describing how semantics could im-
prove knowledge management and how user participation could be used
to produce huge amounts of information. However, research has only
recently started to try to address both of the problems at the same time.
Moreover, even in the cases in which this limit in scope is overcome,
there is still often a limit in perspective: for instance, semantics could

5

1 Introduction

be added to a participative system ignoring the interactions with users,
thus making it less usable; or perfect solutions (from a technical point
of view) could nevertheless lead to bad results into a system which does
not fit its community’s main activity.

Our effort in this project has been to find both the technical insights
and the design paradigms to (i) choose the best participative system
for a particular community and its activity, or evaluate the health of
an existing one, and (ii) address part of its limitations using Semantic
Web technologies (after recognizing if it is possible in the first place).
As a result, we provide—in a very participative way—not a ready-made,
top-down methodology, but a set of suggestions and patterns which can
be used to bootstrap or fine tune a social system. Moreover, to these
insights we add the results of our experimentation with Semantic Web
technologies, and in particular:

• we show how two of the main tools to manage semantics, that is
ontologies and reasoners, could be exploited to provide enhanced
user interfaces for information visualization and consumption. In
particular, working with wiki systems, we do not focus just on the
semantics of their contents, but also on the “hidden layers” such as
the context of use and the system itself, providing new models of
interaction with the user (see Chapter 4);

• we show how intrinsic limits in classification which depend on the
ambiguity of English words could be addressed by semantic dis-
ambiguation techniques. We apply these methods to the world of
folksonomies (see Chapter 5), showing the advantages they carry
both to information retrieval and to the users’ browsing experience;

• we show the advantages of exposing and sharing information as
linked data (see Chapter 6) in new fields: (i) exploiting data repos-
itories such as Freebase to get the information to bootstrap new
participative systems, (ii) exporting widely used formats such as
IMAP to RDF to increase interoperability, and (iii) allowing the
conversion of proprietary formats such as browser history to a
standard shared representation that could be used more easily by
browser-independent applications.

Finally, we bring in this document all the findings and the visions
we collected after years of research on the topics of participation and
Semantic Web. Even if we know that they might not be all novel for
everyone, we hope that having all of them gathered in one place could
be useful for at least some of the readers of this document.

6

1.4 Structure of this document

1.4 Structure of this document

The document is organized as follows:

• Chapter 2 provides the background needed to understand the rest
of the thesis: after a brief survey of the main social systems cur-
rently available and the introduction of a taxonomy for participa-
tion, we introduce some basic concepts about social interactions;
we continue with a description of the current work on participa-
tion and semantics and conclude showing the main technologies
and tools that we used inside our project;

• Chapter 3 shows our approach, which starts from the evaluation
of the activity system as a whole (that is, considering not only the
tool, but also its users as a community and their main activities)
and continues with its extension thanks to semantics. We then
describe our design approach, highlighting the architectures that
are most common in our projects . Finally, we briefly introduce our
experimental developments, which are then described with more
detail in the following chapters;

• Chapter 4 is devoted to semantic wikis, that is semantic extensions
to wiki systems, and the use of OWL ontologies and reasoning;

• Chapter 5 introduces the concept of folksology, that is the seman-
tic extension of a folksonomy, and shows different applications of
ontologies for the organization and visualization of unstructured,
tag-based knowledge;

• Chapter 6 approaches the lowest level of semantics, that is linked
data, and shows how “a little semantics goes a long way” [67] pro-
viding examples of data extraction, conversion and interoperability;

• finally, Chapter 7 shows our conclusions and suggestions for future
work.

7

2 Background

This chapter describes the theories, techniques, and tools that we have
used for our research project. As we showed previously, the success of
participative systems is an interesting phenomenon that could be studied
from many different perspectives: this is reflected in the different theories
that are introduced in this chapter. However, albeit heterogeneous this
collection might seem, for each approach we describe we also give our
personal interpretation and motivations, thus providing a unifying view
under our project’s perspective.

The first section is a brief survey of existing social systems, categorized
depending on their main features. The description of a taxonomy of
participation follows, trying to shed some light on the different kinds of
participation that characterize these systems. Then we introduce some
basic concepts of social interactions, from the more informal ones such as
the “wisdom of crowds” to the more formal ones, such as activity theory
and communities of practice. The chapter continues with a description
of the current work on participation and semantics (for what concerns
our main fields of activity, semantic wikis and folksonomies) and ends
showing the main technologies we used inside our projects.

2.1 Social systems

This section aims to be a survey on currently existing social systems,
with the goal of giving a broad view of what is currently available and
how it is mainly used.

One point which is very interesting from a social perspective is that
many of these technologies are often used in practice for purposes that
are different than the ones they had been built for. This might happen
for different reasons, such as:

• availability: a particular system is the only one available for a
community;

• locality: as social systems become places for people to gather
around, a community might choose to let the tools provided by

9

2 Background

a particular system constrain its activities just because it does not
want to “move” elsewhere;

• imitation: as other similar communities had success using a par-
ticular system, new similar groups might tend to use the same one;

• practice: a community—not necessarily an online one—might al-
ready share some practices that are independent from the newly
adopted system and try to shape it according to them.

Of course, not all of these systems work well in practice. However,
what is most interesting is the fact that some of them actually do: for this
reason, we decided to highlight these cases in the following descriptions.

The fact that many systems do not have a precise function, but rather
the way they are actually used might change depending on their own
communities, makes it difficult to categorize them as belonging to one
category or another. So, we decided to group them by what we consider
their main functionality, but always keeping in mind that they could be
used for different purposes too. Moreover, we are sure that there are
still many systems or tools that we have not shown or that could be
described with more detail, but we decided to concentrate on the ones
which seemed more related to our research. For those who want to delve
deeper into this topic, a good starting point might be the “Collaborative
Software” Wikipedia page [158].

The main categories we divided participative systems in are:

• Creating and publishing, with tools such as blogs, wikis, and
realtime editors, which are used to collaboratively write texts;

• Communicating, with systems such as email, forums, and instant
messaging tools;

• Sharing, which comprises all those systems that allow to share
resources like videos, images, documents, and so on;

• Recommending, with all those systems where the fact of rec-
ommending something to others (either implicitly or explicitly) is
central to the activity system;

• Coordinating, which comprises those systems that allow a group
to coordinate or to manage a complex task together;

• Networking, with systems where linking to other users is the most
prominent activity;

10

2.1 Social systems

• Playing, with systems where playing together is the main activity.

2.1.1 Creating and publishing

Blogs

The word blog is the contraction of the term “Web log”, originally used
to refer to Web sites organized as online diaries. Actually, modern blogs
still have a structure which is very similar to the one of diaries: they
are organized in articles and each of them is characterized by (at least) a
date, a title, and a content. Usually articles are ordered by date, with the
most recent one on top and the other ones following it; a fixed number of
articles are shown into the main page, while older ones can be accessed
through an archive, which is usually divided in months. Finally, each
article can be given one or more categories, which are often specified by
tags and allow to browse the archive according to another dimension.

Even if blogs started as a mainly textual medium, they can now be
grouped into many categories which are specialized in different kinds of
media: for instance photoblogs or sketchblogs, which are specialized on
images, vlogs, devoted to videos, and mp3 blogs, which are used to publish
audio files. Moreover, it is possible to use blogs both as personal websites
(that is, with just one author publishing contents) or in a collaborative
way, where the system aggregates in the same pages articles written
by different authors. Posts can also be opened to comments, allowing
for a two-way medium where the boundary between writers and readers
becomes fuzzy.

All of these systems, however, share the very same structure and have
a common representation of data, that has been standardized through
the RSS format1. The presence of a standard and the existence of many
different applications using it to show, merge, or filter information, surely
contributed to the success of blogs. According to Technorati2, the blogs
currently tracked are now more than 110 million as of August, 2008, and
they grow at a pace higher than 120 thousands blogs per day (see Figure
2.1).

Wikis

Wiki is a term derived from the Hawaiian expression “wiki wiki” meaning
“fast” or “quick.” Wikis are interlinked web sites, first introduced by Leuf

1See http://en.wikipedia.org/wiki/RSS .
2See http://technoratimedia.com/about . For some less updated but more de-

tailed statistics about blogs indexed by Technorati, check [134].

11

2 Background

Figure 2.1: Growth of the number of tracked blogs from March, 2003 to
March, 2007 according to Technorati.

and Cunningham [92], that can be collaboratively edited by anyone. On
one hand, this means that wiki systems are so easy that even novice users
can edit them: pages are written using a simple syntax, called wikitext
or wiki markup, which can be learned very quickly. On the other hand,
following the philosophy of making it easy to correct mistakes rather
than making it difficult to make them, wikis usually put no restrictions
on who can edit a page, so anyone can modify their contents. Of course
this opens wikis to any kind of malicious contribution, such as spam or
intentionally misleading information: for this reason, while some wikis
still exist which have editing open to anyone, other more famous ones
(such as Wikipedia3) decided to allow only registered users to modify
part or all of their pages.

As described in [128], even if there is a wide range of wiki systems
available, all of them share the same set of properties:

• Editing via Browser: pages can be edited directly from within
the browser, without requiring any additional software to be in-
stalled. While this might not seem surprising in 2008, where blogs
and many Web applications that allow to do the same thing are

3Wikipedia decided to close anonymous editing on a subset of its pages after the
“Seigenthaler incident”, described in [160].

12

2.1 Social systems

available, this was a great feature years ago, when the first wiki
systems came out. One of its main advantages is that it adds im-
mediateness to the system, as anyone who can see a wiki page has
also at the same time all the tools that are needed to edit it;

• Simplified Wiki Syntax: the syntax used to describe how con-
tent has to appear in wiki pages (i.e. the text formatting features,
the division of documents in sections, and so on) is much easier
than HTML, which is the standard for generic Web pages. This
makes it easier for users to write contents, as it does not require
anyone to have any specific technical knowledge. Moreover, some
wikis now also offer a WYSIWYG (“What You See Is What You
Get”) interface, that makes them much more similar to any com-
mon word processor such as Microsoft Word;

• Versioning: wiki pages are versioned, that is there is a record for
each change that is made to them. This is often described as the
feature which balances their openness, as every change that con-
tains errors could be eliminated by reverting to a previous version
of the page. Whether this is actually feasible or not (this might
change much depending on the type and the size of the system),
it is still a precious tool as it allows users to check which are the
latest changes or the differences between any two versions of the
same page;

• Strong Linking: hyperlinking is one of the most important tech-
niques for navigation inside wiki systems, as the only useful struc-
ture that can be given to a website that grows from the bottom
up is the one that appears in its own pages. Thus, wikis usually
allow users to create links in a very easy way (often just by writing
words in CamelCase4) and there is not the concept of “dead link”,
but rather any hyperlink that points to a page which does not exist
shows an edit box that allow users to create that page.

• Unrestricted Access: as described previously, most of wiki sys-
tems allow anyone to create or modify pages without being a regis-
tered user. Some of them provide functions to restrict read or write
access, making the wiki much more similar to a generic Content
Management System tool.

4CamelCase is a way of writing words so that they start with and contain several
uppercase letters. An example is the word “CamelCase” itself.

13

2 Background

In the years many Wiki engines have been created, most of which
are opensource5, and they are used for different purposes ranging from
collaboratively edited encyclopedias (i.e. Wikia6) to software documen-
tation (i.e. Jena7) and collaborative publishing8. Literature also shows
experiments in wiki-based collaborative programming environments [62,
31]: source code is saved inside wiki pages and users can make it better or
clone it into other pages to build their own applications. Acre is a more
recent experiment9 which provides a full online development environ-
ment for Javascript-based, server-side applications: users cannot modify
someone else’s program, but can access others’ source code and clone it
into their workspace. Shared code allows users to build their work over
someone else’s efforts, avoiding to reinvent the wheel each time and, at
the same time, providing useful feedback to the original programmers.

Collaborative editors

Collaborative editors are tools that allow to write documents collabora-
tively, helping to manage the problem of synchronization between many
users. There are two main classes of systems, the synchronous and the
asynchronous ones.

The class of tools that allow users to collaboratively edit documents
in an asynchronous way contains the so-called revision control systems.
These systems are usually centralized and enable developers to check out
a copy of a document, edit it, and commit the changes back to the server.
Some well known examples are CVS10 and Subversion11.

One of the main advantages of these tools is that they do not only
allow to keep a shared version of a document on a central server, but
they also try to manage concurrent edits on the same documents. When
this happens, if the edits have been made in different sections of the
document they can be merged together. However, when concurrent edits
are applied to the same part of the document, a conflict occurs: the

5See http://en.wikipedia.org/wiki/Comparison_of_wiki_software and http://

www.wikimatrix.org .
6http://www.wikia.com .
7http://jena.hpl.hp.com/wiki .
8The project called “A Million Penguins” [96] describes a rather unsuccessful example

of collaborative writing. A more succesful writing community, with a couple of
published books, gathers at http://ippolita.net/riso .

9By Metaweb (http://metaweb.com), accessible at http://dev.freebaseapps.com/
wiki/index .

10Concurrent Versions System, available at http://www.nongnu.org/cvs .
11See http://subversion.tigris.org .

14

2.1 Social systems

revision system is unable to merge both changes into each other and
leaves the coordination task to its users.

As a consequence, this class of tools works very well on projects where
many separate text files are involved (i.e. source code development): in
this case, there are less chances that different users will edit the same
document section at the same time. When, instead, the number of files
is lower, chances for conflicts grow and the tool could not be able to
automatically merge all the edits.

Finally, it is worth to note that these systems alone are not able to
understand which edits could be conflicting when they do not belong to
the same section, such as functions which are called in different parts
of a program or formulas that are conditions for a theorem proof. The
reason is that in these cases the system is not able to understand the
semantics of what is written, thus requiring a coordination effort by the
users.

Tools trying to overcome this limit by allowing users to coordinate
in real-time, while they are writing a document, belong to the class
of “collaborative real-time editors”. These systems show users a shared
view of the same document, where everyone can see in real-time all the
changes done by others. Some examples of these tools follow:

• Abiword (http://www.abisource.com) is an opensource word pro-
cessor that provides a plugin, called AbiCollab [130], which allows
to access remote documents on another user’s machine and edit
them collaboratively;

• Gobby (http://gobby.0x539.de) is a collaborative realtime text
editor which also provides a chat system, allowing users to com-
municate while they are writing (see Figure 2.2);

• Google Docs (http://docs.google.com) is a word processor that
runs as a Web application. Some of its main advantages are that
it allows users to share documents and edit them together in real-
time; it has a discrete compatibility with the most common word
processors, such as Microsoft Word and Openoffice; it works inside
a browser, so no other program is needed; finally, it allows users to
save documents on a personal space online, so that they can open
them from any other computer which has an Internet connection.

15

2 Background

Figure 2.2: A screenshot from the collaborative realtime editor Gobby:
users are editing a shared document and communicating via
chat in the same window.

2.1.2 Communicating

E-mail

Being one of the first services set atop the Internet, email might seem
outdated if compared with the most recent ones. However, it is still
widely used and has a very important role into social systems thanks to
its flexibility. With email, for instance, it is possible to:

• communicate with other users who have an email address;

• communicate with mobile phones, sending and receiving short mes-
sages12;

• browse the Web13;

• exchange any kind of file as an attachment;

• manage group communication with mailing lists;

• broadcast news with newsletters.
12See http://en.wikipedia.org/wiki/SMS_gateway .
13See, for instance, http://www.www4mail.org .

16

2.1 Social systems

A feature which is typical of email is that, even if the system has been
built to be “on demand” (that is, users have to connect to the email
server in order to download their new messages), it actually works most
of the times as a “push” medium. In fact, users often just leave their
email clients open, automatically connecting to their mailboxes to see
if there is something new. This is the reason why many social systems,
which otherwise would require users to explicitly connect to them to
have updates, keep them updated by email. For instance, MediaWiki
(the same software that is used for Wikipedia) allows users to subscribe
to some wiki pages and automatically be updated by email whenever
one of them is modified. Facebook also uses this technique, providing
users with a huge quantity of often totally uninteresting details by default
(fortunately, it is possible to turn this feature off for most of the updates).

Forums

Forums are the Web descendants of the old BBSes (Bulletin Board Sys-
tems) and Usenet groups [161]. With both they share the possibility to
publicly exchange messages with a group of users, and at the same time
to leave these messages into an archive which is available for others to
read. However, they are still different from Usenet as they do not have
a network structure: actually, even if there are some experiments to cre-
ate peer-to-peer forums, almost all of them are still services installed on
single servers.

Forums are a very versatile tool, as they allow users not only to com-
municate but also to exchange any kind of resource. Some of them also
take care of user privacy, allowing the exchange of private messages and
allowing only registered users to write, and in some cases even to read
their contents. This also offers some protection from Web crawlers (so
forum contents will not be indexed by search engines) and from spam-
mers.

Similarly to email, forums have also been used for many unforeseen
purposes, such as file or link sharing: actually, they are often used as a
high-quality, community-driven backbone for many (more or less legal)
peer-to-peer systems. In the years they have not drastically changed, but
they have slowly evolved into more complete services, providing more and
more features to their users. As a signal that there is still interest around
this kind of systems, earlier this year a new forum hosting service called
Lefora14 has been opened, offering space and tools for anyone to open
their customized forum.
14http://www.lefora.com .

17

2 Background

Chat

Chat is another historical way of communicating over the Internet: IRC
(Internet Relay Chat), for instance, is a communication protocol that was
created in 1988 and there are still many networks now which rely on that.
Chat systems have then evolved into Web-based ones and IM (Instant
Messaging), offering users different interfaces and ways of interacting.
However, their main characteristic remains always the same: they allow
users to communicate synchronously.

IRC and many Web-based chats allow users to join channels (or rooms)
devoted to different topics: after joining a channel, it is then possible to
see the list of other participants and exchange messages with them, either
privately or with the whole group. Instant Messaging systems offer one
more feature: as everyone has to log into a central server, users can
keep a list of their friends’ accounts and see when they are online: this
also makes the tool much more used for exchanging messages with single
users rather than with groups.

IRC chats are characterized by the presence of bots, that is software
agents that use the IRC protocol to connect as users and perform au-
tomatic tasks. For instance, some of them are used to provide authen-
tication mechanisms inside a channel (giving users higher privileges if
they identify themselves as registered), others to automatically moderate
channels, and others to allow users to download files. This last category
of bots transformed IRC in another file sharing network, with particular
characteristics which make it unique: first of all, it is not a peer-to-peer
network (see Section 2.1.3) but it is a client-server one (where servers can
be users’ machines too); then, it has no official, centralized list of files
as anyone can be a file provider; similarly, as different softwares can be
used for bots, it also has no standard way for searching and downloading
files. As a consequence of this, file sharing over IRC is a practice which
is not very common and is usually done just by few, more expert users.

Micro-blogging

Micro-blogging is a form of blogging that allows users to write brief text
updates (usually 140 characters) and publish them, either to be viewed
by anyone or by a restricted group which can be chosen by the user.
Given the size of the messages and the different media these kind of
systems can run on (messages can be exchanged i.e. by text messaging,
IM, and email), micro-blogging could be considered more similar to a
communication system rather than a way to publish contents online.

18

2.1 Social systems

The most popular systems are Twitter15 and Jaiku16, but the total
number of similar services is very high (more than one hundred in May
2007) and increasing. Moreover, many other social systems such as Face-
book provide users with a way to update friends about their “status”
which is very similar to micro-blogging.

2.1.3 Sharing

Systems belonging to this category allow users to share resources on
the Internet. A resource is, using RDF terminology (see Section 2.5.1),
“anything that can have a URI”. Thus, in these systems users can either
share files of any kind (such as in file sharing applications) or URLs that
point to them (such as in social bookmarking systems).

The classic client-server model

Before peer-to-peer, file sharing mostly followed the classic client-server
model: few internet users, who had a chance to upload their data on
some server, could make their files available to others via the HTTP
or FTP protocol; it was left to their choice whether these files had to
be accessible to anyone or just to a small group (usually authenticated
with a password). The main limit of this system was that information
was scattered around many different servers and there was no central
authority providing a list of the available files. One solution was to
use different specific search engines; the other was to rely on the many
different communities that emerged at that time, which gathered around
specific topics (i.e. security, videogames, music) and provided updated
and commented links for different kind of resources.

Peer-to-peer

With peer-to-peer users can share files from their own computers without
the need for third-party servers. Actually, in some p2p networks central
servers are still present to provide a centralized index of all the available
files; however, in many recent systems file requests are broadcasted over
the whole network, so that no peer has a higher importance than others
(which is a strategically important detail, as nobody can stop the system
just by shutting down a single computer).

15http://www.twitter.com .
16http://jaiku.com .

19

2 Background

In peer-to-peer a radical change in user interactions occurs: to make
the network more efficient, many p2p systems require users to share files
while they are downloading them; thus every user is at the same time a
provider (often without even knowing it) and a consumer.

The modern client-server model

In more recent times, new services became available which allow users
to share files but, at the same time, take advantage of their centralized
nature to provide a new value from the collection of everyone’s shared
material. Some examples of these systems are Flickr for images, Scribd
for documents (i.e. plain text, PDF, Word, etc.), Slideshare for pre-
sentations, and YouTube for videos. The architecture of these tools is
still client-server, but most of them are characterized by some additional
features:

• differently from most of peer-to-peer networks, they mostly deal
with user-generated material17;

• they often specialize in one or few specific file types and offer the
chance to open them directly within the browser. This allows users
to access any file they uploaded wherever they are, provided they
have an Internet connection, without the need of any specific ap-
plication;

• they often do not require users to share their files with everyone,
but most of the times users want to do that anyway;

• users are not scattered among many different servers anymore, but
fewer servers become central places for the activity of file shar-
ing. This allows these systems to aggregate contributions from
many users in different ways, thus providing incentives for those
who contributed. For instance, users might be requested to rate
an item and then they are provided with resources which could
fit their tastes; files are clustered by similarity (either of the files
themselves or of their metadata, i.e. tags) and “related resources”
are automatically provided; search functions are present to help
users in finding what they could be most interested in.

17Actually, there is a huge difference between user-generated and original or non-

copyrighted material: this is still an open problem, as described in [4, 8] for the
case of YouTube.

20

2.1 Social systems

This model works fine with many different pieces of shared informa-
tion, even if they do not come in self-contained files. For instance, Bib-
sonomy18 offers the chance to save and tag bibliography items inside a
personal space. Once saved, they are made public to everyone and can
be searched by tag, title or author, shared with other users, or exported
to many different formats (i.e. BibTeX, EndNote, HTML, etc.).

Social bookmarking systems

Anything which is available on the Web, being uniquely identified by its
URL, is a particular type of resource: thus, it can be added metadata
and shared with others. Social bookmarking systems allow their users
to save their favorite URLs inside an online repository; these bookmarks
can be made public or private, but often they are shared with everyone;
moreover, the user who saves them can categorize them with short, easy
to remember text strings called tags (for a more in-depth description of
tags, see Section 2.4.2).

The first advantage of using such a system is that the collection of
bookmarks is stored online and can be accessed anywhere: this means
that it cannot be lost easily, it can be shared between many computers,
and is completely application independent as any browser can access
it. This approach is very similar to the one used for other resources:
basically, this kind of systems give users some online space where they can
save their own data. However, in this case someone’s “own” bookmarks
refer to websites which are accessible (and possibly known) by anyone
else. This overlapping between published resources automatically gives
the possibility to infer some useful information: for instance, users who
share many identical URLs or tags probably have similar interests; if the
same set of tags is used for the same URL by many different users there
probably is some kind of agreement about how to categorize it; searching
for one particular set of tags a user might find new, possibly interesting
URLs shared by someone else.

One of the most famous social bookmarking system is del.icio.us19,
with about five million users as of August 200820. Many other similar
websites, of course, are available on the internet (i.e. Magnolia21), trying
to provide the same features plus some more; none of them, however,

18http://www.bibsonomy.org .
19http://del.icio.us, recently moved to http://delicious.com .
20Information taken from http://blog.delicious.com/blog/2008/07/

oh-happy-day.html .
21http://ma.gnolia.com .

21

2 Background

has reached the same success that del.icio.us had. The main concept,
that is saving URLs together with some attached metadata and getting
value from aggregating this information, has been slightly changed and
reused in other systems: for instance, semantic annotations work on very
similar principles; file-specific bookmarking services can take advantage
of the known filetype to provide online access to the saved resources (i.e.
Webjay.org, now acquired and closed by Yahoo!, shared playlists built as
collections of URLs of audio or video files); news services like Digg (see
next section) or social systems like Twine22 allow to share and comment
news-related URLs.

2.1.4 Recommending

One of the main characteristics of social systems is that it is often possible
to infer new information from the aggregation of users’ contributions.
One of the first example of this inferred information is represented by
recommendations23.

Information used for recommendations can be gathered by the system
or provided by users themselves. For instance, inside the two social news
websites Digg and Reddit, users can vote their favorite news allowing
them to advance to the front page. Last.fm, instead, offers personalized
streaming music by allowing users to rate the songs they listen and sug-
gesting related ones. While in the former case users explicitly specify
their preferences, in the latter all users have to do is listen to music: if
they listen to a song up to its end this is considered as a positive feed-
back; if they skip to the following song it is considered as a negative one;
however, they can also give stronger feedbacks by clicking on the “love”
or “ban” buttons on their players.

Another category of recommendation-based systems is represented by
the so-called social libraries, which allow users to keep track of their in-
terests online, saving a collection of their favorite books, movies, restau-
rants, or even beers24. For each item, users can specify a rating which
might help others to choose between resources and, at the same time,
gives the system the information it needs to suggest users the related
items they might like.

Many specific review systems are available which just collect reviews

22http://www.twine.com .
23According to Steven Johnson’s interview about emergence [135], Amazon was al-

ready providing book recommendations back in 2002.
24An example of each is available at http://livingsocial.com .

22

2.1 Social systems

Figure 2.3: The review for a movie on Revyu and its RDF representation.

for particular classes of items: Yelp25, for instance, is specialized in
places, with 22 different categories which range from restaurants to re-
ligious organizations; Epinions26, instead, is mainly specialized in prod-
ucts. A very nice experiment is the one made by Revyu, which merges
reviews with Semantic Web technologies allowing users to review any-
thing which has a URI and specify its category using tags. Information
is then made available in RDF and can be queried through a SPARQL
endpoint.

2.1.5 Coordinating

Between social systems there are some built to help users coordinate
their collaborative efforts. Basically, they allow to share information
about the group’s common activities, such as data about the group itself
(all users with their contacts and their roles), the object (i.e. a document
or a program), the communications inside the group (i.e. bug alerts, call

25http://www.yelp.com .
26http://www.epinions.com .

23

2 Background

for participation, or generic messages), and everything which is related
to the management of time (project timeline, meetings, and so on).

Depending on the activity that takes place, different tools can be con-
sidered more or less useful by the group for its coordination. A descrip-
tion of the most common ones follows:

• electronic calendars, such as Outlook, iCal or Google Calendar, al-
low to organize meetings and share events with other users. The
wide diffusion of the iCalendar standard [38] allowed many differ-
ent systems and applications to support the same calendar infor-
mation, making it not only sharable between different users but
also portable everywhere, from Web servers to mobile devices;

• project management systems, such as SourceForge or Savane27,
do not only offer space for a project’s files but also give all the
tools that are needed to follow its development, such as a tracker
(to manage bugs, feature requests, statistics etc.), forums and
CVS/SVN;

• online spreadsheets, such as Google Docs’ spreadsheets, allow not
only to collaboratively and synchronously edit the same document
in realtime (as already described in Section 2.1.1), but also to share
structured data with others;

• workflow management systems allow for the collaborative manage-
ment of tasks and documents within a knowledge-based business
process;

• knowledge management systems allow to collect, share, and manage
information in different forms.

2.1.6 Networking

Following the definition in [24], we consider social networks those “Web-
based services that allow individuals to (1) construct a public or semi-
public profile within a bounded system, (2) articulate a list of other users
with whom they share a connection, and (3) view and traverse their list
of connections and those made by others within the system.” Note that
while generic connections between users have already been shown within
other systems (such as “similar users” for recommendation systems or

27https://gna.org/projects/savane .

24

2.1 Social systems

tag-based ones), social networks are different as they allow any user to
explicitly specify her own relations, such as friends or business contacts.

Social networking sites are widely known (especially because of the
great success of services like MySpace28 or Facebook) and have recently
become very common (see Figure 2.4), reaching the point that a need for
a semantic “portable user profile” has been envisioned [23]. Different net-
works often have different purposes: for instance, MySpace is more music
oriented, while LinkedIn is devoted to business contacts and Facebook
to real-life friends.

From the very first social networks, which just provided the means to
interconnect users and had a rather short life, a more modern approach
evolved that could be defined as object centered sociality (as defined
by Jyri Engeström [43], borrowing the term from Karin Knorr Cetina),
where social networks consist of people who are connected by a shared
object. Engeström uses as successful examples Flickr (where the ob-
jects are photos), del.icio.us (with bookmarks) and Upcoming.org (with
events). An extension of this model is represented by Facebook ap-
plications, which can be programmed by anyone and provide more or
less useful/entertaining mediating objects for users to build connections
through.

Another example is Naymz29, which has a network similar to the one
provided by LinkedIn (actually, it offers the possibility of automatically
importing contacts from LinkedIn, together with the main email clients),
but centers on references and reputation: the mechanism of the RepScore
(a score from 1 to 10 which depends on many parameters, such as the
completeness of the personal profile, the number of contacts and the
references provided by them) works as an incentive to make people build
and maintain a social network.

Finally, Twine30 and Plaxo31 build their own social network on an
aggregation of objects and other already existing networks. They allow
users to specify the details of their other accounts and automatically
import and aggregate pieces of information that are published elsewhere.
The main advantage of these services is not only the fact that they allow
to build a social network out of common interests, but also that they
work as community-based filters for new, incoming information: in fact,
only updates generated by connected users or groups are usually shown.

28http://www.myspace.com .
29http://www.naymz.com .
30http://www.twine.com .
31http://www.plaxo.com .

25

2 Background

Figure 2.4: A timeline of social networking services, courtesy of D. M.
Boyd & N. B. Ellison.

26

2.2 Taxonomy of participation

2.1.7 Playing

If social networks work well when they are centered on a common ob-
ject, making the activity of playing as central has always been a strong
incentive for users to gather. Starting from the first MUD32 systems and
arriving to the latest MMORPGs33 such as World Of Warcraft, these
systems allow users to assume the role of a fictional character (often in a
fantasy world) and interact with other users or with computer-operated
characters. Differently from single-player games, the virtual world in
which the game takes place is persistent, that is it evolves even when the
player is away from the game.

Another example of virtual world is Second Life, where players do not
have a particular quest to solve but they can do anything, from building
their own house to running an online business. The main characteristic
of Second Life is that it introduced money in a virtual world, attracting
not only the interest of gamers but also the one of many commercial
entities.

Finally, PMOG34 is a game which highly exploits user participation
and at the same time mixes it with Web browsing and metadata. Using
a browser extensions, users can attach different types of metadata to
any website (hidden information, traps, presents, and so on) and gain
points and rewards just by browsing the Web. This idea is particularly
interesting for us as it uses architectures and technologies which are very
similar to the ones we adopted in some of our experimental developments.

2.2 Taxonomy of participation

The reason why this section is called “taxonomy of participation” and not
“taxonomy of participative systems” is the following: while it has been
not so hard to give an interpretation to the basic concepts related to
participation and then order them according to what they meant to us,
it would be much harder to actually classify a social system in a unique
way. This happens because almost every existing system (or system
family) is characterized by different levels of participation, so the same
one could be classified in different ways according to how it is used.
Nevertheless we found this taxonomy useful, as it provides a common

32Multi User Dungeon, see http://en.wikipedia.org/wiki/MUD .
33Massively Multiplayer Online Role Playing Game, see http://en.wikipedia.org/

wiki/MMORPG .
34Passively Multiplayer Online Game, see http://pmog.com .

27

2 Background

Figure 2.5: A possible taxonomy for participation.

and more precise way to describe the different forms of participation we
were able to find in social systems.

We decided to use the term social to describe all those multi-user
systems in which people can interact, share information, or both. Most
of these systems can either be found on the Internet or inside enterprise
intranets. One of their main characteristics is that, differently from
previous multi-user systems, they exploit not just the presence of users
inside the system, but also the interactions and the relations that occur
between them. These interactions and relations can be either explicit or
implicit, in the sense that they can be performed or specified either by
the user or by the system itself: some examples follow in Table 2.1.

Our definition of social systems is broad enough to account for a lot of
different tools and technologies, so we decided to refine it by suggesting

Interaction Relation
Explicit Email communication User adds friends to his Face-

book35 network
Implicit Feed subscribers get new

articles from a blog
Users are automatically linked
by a clustering algorithm accord-
ing to their behavior

Table 2.1: Examples of explicit and implicit interactions and relations.

28

2.2 Taxonomy of participation

some subsets which could better describe the specific behavior of partic-
ular families of systems. The higher-level subset we defined is the one of
participative systems, in which users are not just present, but actually
“take part” into some general activity. This definition mainly focuses on
the fact that users are active in the system, no matter if they actually
contribute to it. As an example, think about users who listen to music on
last.fm36: even if this is their only action, they participate to one of the
system activities providing useful information, even if they do this in a
totally implicit way. In this case, the tool takes care of aggregating data
from user behavior and elaborates them to provide better suggestions.
Systems like this can be described from two different point of views, the
one of the user and the one of the tool, and they are often also defined
as collective [154].

Within participative systems there are some that we define as contribu-
tive. The word “contribute” derives from the Latin contribuere, which is
built on the two words cum (“together”) and tribuere (“to give”). As the
word implies, in this case users do not just take part into an activity,
but they also explicitly provide something to the system. In one of the
most basic definitions we found, every contribution could be classified as
a creative action, a suggestion or a resource. Trying to give a more mod-
ern, internet-related interpretation, an action could be the creation and
publishing of some Web contents; a suggestion could be a feedback, like
a comment inside a blog, a rating, or a classification of some resource;
a resource could be represented by a multimedia file, such as a video
or an image, or more generally by a URI (Uniform Resource Identifier),
which uniquely identifies a resource on the Internet. All of these different
contributes can be provided by users who are working alone or together
with others. Systems which allow for this last kind of activities, where
users work together with a common goal, are called collaborative (from
the latin cum+laborare, “work together”).

As we previously stated, it is almost impossible to univocally classify
a system according to our taxonomy. For instance, Wikipedia articles
have been often used as an example of a collaborative effort, as many
users often converge on the same article and work together to build or
enrich it; however, in many cases users participate with single, atomic
contributions, such as small stubs or error corrections, for which no co-
ordination with other users is required. Conversely, a tag-based system
like del.icio.us is not considered collaborative, as usually everyone tags
his own bookmarks for personal purposes; however, people can use it

36http://www.last.fm .

29

2 Background

collaboratively by agreeing on using the same tag set to build a personal
collection of links, or by suggesting links to other users by using special
“for:username” tags.

To describe why classification is such a difficult task for participative
systems we use the “county fair example”. In a county fair, a lot of differ-
ent people participate: the organizers collaborate to prepare the event;
donors contribute with offers, builders prepare the stage, and everyone is
going to provide suggestions about how to organize everything; food sell-
ers are there for their own business, while normal people just go there
to have fun. However, the success of the fair depends on each one of
them. Similarly, any non-trivial social system opens to (and depends
on) different kinds of participation, allowing anyone to be more or less
involved in it.

This example describes participation only from the system’s point of
view, temporarily ignoring the presence of users. However, we know that
for a participative system to work we need not just the system itself, but
also user contributes. For this reason, in the next section we describe,
together with the basic concepts of social interactions, the different levels
of participation from the user’s point of view (see Legitimate Peripheral
Participation), showing that they are strictly connected with the ones
that are provided by the system.

2.3 Basic concepts of social interactions

2.3.1 Wisdom of the crowds

One of the concepts which are most quoted when trying to describe why
collective intelligence works is the “Wisdom of crowds”, from the book
written by journalist James Surowiecki [142]. Quoting an experiment
made by the scientist Francis Galton in 1906, when a heterogeneous
group of 787 people was able to guess (on average) the weight of an ox,
he concludes that “under the right circumstances, groups are remarkably
intelligent and often smarter than the smartest people in them, especially
if individual guesses are aggregated and averaged”.

Surowiecki then shows that for the conclusion to be valid some re-
quirements have to be met:

• diversity of ideas, as it adds perspectives that would otherwise be
absent. The lack of difference would lead to what is defined as
“collective cognitive convergence” [113], which facilitates mutual
understanding and coordination, but if left unchecked can lead the

30

2.3 Basic concepts of social interactions

group to collapse cognitively, becoming blind to viewpoints other
than their own. On the contrary, the presence of differences would
make the group more versatile and better at solving problems;

• independent thought, meant not as isolation but rather as relative
freedom from the influence of others. When this does not happen
the crowd does not behave as wise anymore, as described in [125,
88];

• decentralization: this means that the power of the group does not
fully reside in one central location, and important decisions are
made by individuals based on their own knowledge.

2.3.2 Motivations and incentives

Motivation is (see Wikipedia) “the reason or reasons for engaging in a
particular behavior”. An incentive, instead is “any factor that provides
a motive for a particular course of action, or counts as a reason for
preferring one choice to the alternatives”. As described in [79], some mo-
tivations for contributing could be anticipated reciprocity, reputation,
sense of efficacy, need, and attachment or commitment to a community.
Examples of incentives, instead, could be features like ongoing inter-
actions, identity persistence, knowlegde of previous interactions, visible
contributions and recognitions, and the presence of well defined group
boundaries.

Even if for clarity of presentation motivation has sometimes been re-
ferred as internal (or intrinsic) and external (or extrinsic), it actually
is something that spawns and grows only within an individual and can-
not be created or given by someone else. So, to drive people’s actions
through motivation (i.e. in our case, making a person participate to a
collective activity) it is necessary to give them the incentives which could
provide the right motivations.

Actually, this is a simplification and both incentives and motivations
work in a much more complex way. Different sciences approach the
problem of defining or classifying them from different perspectives, and
often yield to different solutions too. For instance, a classification of
incentives that is very common in economics [74] is the following one:
remunerative incentives exist if it has been made known to a person that
behaving in a particular way will result in some form of material reward
she will not otherwise receive; moral incentives are present if a person
has been taught to believe that behaving in a particular way is the “right”
or “proper” or “admirable” thing to do; coercitive incentives are said to

31

2 Background

exist where a person can expect that the failure to act in a particular
way will result in physical force being used against her.

These classes, however, do not comprise all those personal incentives
that might motivate an individual. These are described much more in
detail, instead, by psychology and sociology, which take into account
concepts such as tastes, desires, and sense of duty and so on. For in-
stance, among the incentives to join a group or social network there is
the fact that groups can provide encouragement and support; establish
identity with others and fulfill the need to feel included (see also [103]);
or, simply, they might help to establish friends, relationships, and the
opportunity to interact with others.

What we witnessed inside participative systems is that there are com-
plex dynamics that could only in part be described by what we found
in literature: a deeper study about these topics is needed to better un-
derstand them and we decided to take it into consideration as a possible
future extension of our research. With the tools we currently have at
hand, however, we were able to approach the concept of gratification as
one of the possible user incentives and its application in participative
systems.

In many successful systems we studied (just to name a few, del.icio.us,
digg, and almost all peer-to-peer) we found there always was something
to encourage users’ participation: it is a gratification they get when they
contribute to the systems. We were able to spot three different types of
gratification:

• instant gratification is something that users get immediately af-
ter contributing to the system. For instance, inside a knowledge
management system (whether social or not) the reward could be
represented by automatically generated links between the newly
entered piece of information and the related one inside the knowl-
edge base (such as in SemperWiki [111]);

• long term gratification: in a healthy system the gratification due
to a contribution cannot just be instant. For the system to be
really useful there should be some long-term incentive: a typical
one is that contributed information is stored online and accessible
anytime and anywhere (i.e. del.icio.us bookmarks, Google Docs,
Flickr, etc.);

• expected gratification is the driver for people who have not con-
tributed yet to actually participate. The lack of such an incentive
makes very hard for a system to bootstrap, so ways to provide it

32

2.3 Basic concepts of social interactions

should be found: for instance displaying past contributions, ac-
knowledging those users who made them, and showing how they
impacted the whole system increasing its overall value.

All these three types of gratification are important, however being
able to solve the bootstrap problem (especially for a new system) is fun-
damental. One way to address it is to provide the initial contents for
a participative system, nurturing the community by building a base of
readers and then gradually turning those readers into contributors (the
different levels of participation are described more in detail in the next
section). As Matthew Burton37 said38: “People want to be a part of
something that is already good; they don’t want to be part of a founder-
ing effort that MIGHT make it. You can’t rely on people to build your
online presence. You have to build it yourself and make it a home for
them. The content IS the marketing effort.”

In some case providing contents is made automatically, even without
the users knowing it. For instance, inside a peer-to-peer file sharing net-
work the main gratification is the ability to find and download any file
in a relatively short time. To make this possible, many users have to
share the same file, so that its availability is high enough to offer high
transfer rates. Some p2p networks solve this problem by making contri-
bution automatic: while someone is downloading a file, he is sharing all
the pieces he has already transferred on his computer, thus helping to
increase the file availability [27, 143].

Other more explicit dynamics take into account transfer ratios. Some
BitTorrent39 communities gather around forum-like systems, providing
high quality links to online resources. To increase the quantity of infor-
mation available for the community, a ratio system is applied so users
are incentivated to “seed” (that is, leave available for upload) the files
they downloaded for a longer time.

2.3.3 Communities of practice

Communities of practice are “groups of people who share a concern or
a passion for something they do and learn how to do it better as they
interact regularly” [156]. According to Wenger, this concept has found
a number of practical applications in business [157], government, edu-
cation, and of course the Web. It has been adopted most readily by
37Creator of readablelaws.org, more info on http://matthewburton.org .
38Quoted from http://www.newassignment.net/blog/david_cohn/nov2007/12/

newcorrespondent, last accessed on 14-Oct-2008.
39Bittorrent is a peer-to-peer file sharing protocol.

33

2 Background

people in business, because of the recognition that knowledge is a criti-
cal asset that needs to be managed strategically. Compared to the first
groupwares (knowledge management information systems which mostly
resulted in huge failures), systems which rely on the concept of commu-
nity of practice could provide a new approach, focused on people and on
the social structures that enable them to learn with and from each other.

Communities of practice can be spread over vast distances and com-
municate via e-mail, or they can be local and meet face-to-face regularly.
They can be made up of people from the same discipline, or they can
combine people with different backgrounds. Some examples40 are “a tribe
learning to survive, a band of artists seeking new forms of expression, a
group of engineers working on similar problems, a clique of pupils defin-
ing their identity in the school, a network of surgeons exploring novel
techniques, a gathering of first-time managers helping each other cope.”

Although the purposes of different communities of practice can vary,
they all share a basic structure that combines the following three ele-
ments:

• a domain of knowledge: this creates common ground and defines
the group’s identity. Membership implies a commitment to the
domain and a shared competence that distinguishes members from
other people;

• a community : members of a community of practice do not nec-
essarily work together on a daily basis, however engaging in joint
activities and discussions allows them to help each other and share
useful information. The relationships they build enable them to
interact and learn from each other;

• a practice, that is a set of frameworks, ideas, tools, information
(i.e. ways of addressing recurring problems), and documents that
community members share.

Legitimate Peripheral Participation

Legitimate peripheral participation (LPP) is a theoretical description of
how newcomers become members of a community of practice. Accord-
ing to LPP, newcomers initially participate in peripheral yet productive
tasks that contribute to the overall goal of the community (and, at the
same time, whose possible failure would not impact the system as a

40See http://ewenger.com/theory/communities_of_practice_intro.htm .

34

2.3 Basic concepts of social interactions

Figure 2.6: The power law of participation, courtesy of Ross Mayfield.

whole). To show the role of LPP in different communities of practice,
Lave and Wenger [90] examined five apprenticeship scenarios: Yucatec
midwives, Vai and Gola tailors, naval quartermasters, meat cutters, and
nondrinking alcoholics involved in AA.

As as example, tailor apprentices practice sewing by working on easy
tasks such as informal children’s clothing, and as soon as they gain more
experience they can move to more complex activities. Gradually, as ap-
prentices become more acquainted with the practices of the community,
their engagement increases and their participation becomes more and
more central. This scenario has been also cited in [28] to show that the
behavior of users inside a Wiki system such as Wikipedia can be very
similar: users usually start contributing with small corrections to the
articles and then they become more and more involved, learning how to
better use the tool and at the same time collaborating with other users
not just in writing articles, but also in improving the community itself.
Similarly, [69] divides user population in creators, synthesizers, and con-
sumers and [98] suggests its power law of participation (see Figure 2.6).

Some very interesting lessons—that could be useful both in evalu-
ating an existing participative system or in designing a new one—can
be learned by analyzing existing communities of practice. In the sce-

35

2 Background

narios described by Wenger, as in a successful participative system like
Wikipedia, the key to newcomers’ success included, for instance:

• access to all that community membership entails;

• involvement of newcomers in productive activity;

• the possibility to “talk about and talk within a practice”, thus learn-
ing the discourses of the community;

• willingness of the community to capitalize on the inexperience of
newcomers. At any level, everyone “can to some degree be consid-
ered a newcomer to the future of a changing community”.

To conclude, if we compare these considerations with the ones from
Section 2.2, we can see that any participative system can be described
from two different points of view: the user or the system itself. Both of
them show different levels of participation, and it is not a case if they
match in some way: thus, if users feels more involved in his commu-
nity, they can easily move to another kind of participation whenever the
system provides the chance to do it.

2.3.4 Activity theory

Activity theory originated in the former Soviet Union as part of the
cultural-historical school of psychology founded by Vygotsky, Leontjev,
and Lurija. For our study, we mainly focused on the framework provided
by Yrjö Engeström [44] as an extension of Lev Vygotsky’s work [153] on
artifact-mediated and object-oriented action.

According to Vygotsky, the fundamental unit of analysis is the human
activity, which is directed towards a material or ideal object satisfying
a need, which constitutes the overall motive of the activity. Vygotsky
describes human actions with a tripartite structure, where the relation-
ship between human agent and objects of the environment is mediated
by artifacts. This mediation has been defined [84], at the same time,
as “enabling and limiting”: on one hand, artifacts are able to collect all
the experience related to that particular activity and thus they (ideally)
allow agents to perform it in the best known way; on the other, however,
they constrain agents in performing a restricted range of actions, leaving
some potential features hidden to them.

Engeström expands this tripartite structure into the model of a whole
collective activity system, as depicted in Figure 2.7. The activity is a

36

2.3 Basic concepts of social interactions

Figure 2.7: Engeström’s structure of a human activity system.

form of doing which is directed towards a specific object, aiming at the
transformation of the object into an outcome. Activities can be distin-
guished from each other according to their objects, and every individual
or sub-group (subject) can and usually does participate in several activ-
ities at the same time. The community is a set of individuals and/or
sub-groups who share the same general object. The three relationships
subject-object, subject-community and community-object are mediated
by three different artifacts:

• the relationship subject-object is mediated by instruments, that
is anything which is used in the transformation process, including
material tools and signs;

• the relationship subject-community is mediated by rules, which
cover norms, conventions and social relations within the commu-
nity;

• the relationship community-object is mediated by division of la-
bor, which describes the implicit and explicit organization of the
community (for instance the horizontal distribution of tasks or the
vertical division of roles into a hierarchy).

Bryant, Forte and Bruckman [28] have already used activity theory as
a theoretical framework to describe their results in the field of partici-
pative systems. An interesting conclusion is that, even if the object of
the common activity always remains the same (i.e., to build and share

37

2 Background

knowledge in an encyclopedic form), as subjects evolve the same happens
for the way they use the tool, some rules are perceived differently and
users start accepting new roles inside the community.

In our work activity theory plays an important role, as it allows us to
give a very compact—but at the same time expressive—interpretation of
some dynamics that take place inside participative systems. Especially
while dealing with semantics, for instance, it is important to make the
tool enable user activities (as it has to be easy to use and powerful), but
at the same time limit them (i.e. constraining them to the contribution
of structured content, but hiding the inner semantic details). Also, it
is very interesting to note how in current participative systems the tool
encodes the activities as a whole, dealing with user actions, rules (such
as organization of contents) and division of labor (such as managing user
access privileges).

2.4 Participation and semantics

Currently a huge amount of different participative systems exists and
most of them could be made better thanks to the application of seman-
tic technologies. Among them, we chose to focus on wiki systems and
folksonomies for different reasons. First of all, they are very used and
there are examples of huge communities of users for both of them (such
as in Wikipedia and del.icio.us). Then, they both provide unstructured
data by default: in the former case Web pages (mostly free text, with
the exception of some semi-structured data coming from templates), in
the latter tags in the form of text strings. They can both be made more
powerful just by working on content semantics. Finally, they have some
characteristics that make them very particular and different from each
other: wiki systems are notable from the point of view of activity theory,
as the tool (the system itself) can be easily upgraded by users them-
selves; folksonomies, thanks to their very simple structure, allow for the
study of their community as a social network and can be easily extended
with system semantics.

Literature provides many examples of interactions between semantic
technologies and wiki systems or folksonomies, as we describe in the next
two sections.

2.4.1 Wiki systems

The types of interactions between wiki systems and semantic technologies
can roughly be divided in two classes:

38

2.4 Participation and semantics

1. wiki systems used to manage semantics (also defined as “W4ST”,
that is “Wikis for Semantic Technologies”41). In this case, wikis
are seen as tools that can be used to publish information which is
already formalized and structured;

2. semantics used to manage wiki contents (also called “ST4W”, that
is “Semantic Technologies for Wikis”). In this case semantics are
used to make wikis better, providing new ways to query or browse
information and to allow interoperability with other applications.

Wikis for semantic technologies

Examples of the W4ST approach could again be split in two separate
classes: attempts to produce formal knowledge (i.e. using wikis as on-
tology engineering tools) and attempts to extract structured information
from wikis and give it a formal interpretation.

MyOntology [138] is a wiki-based project of the first type, focused on
the development and maintenance of lightweight ontologies and designed
to be easy and horizontal. The main advantage of such a system is that
the creation of the ontology itself is left to the community, which is then
able not only to formalize knowledge, but also the very same model that
is used to describe it. Moreover, an editing paradigm like this would allow
both ontology engineers and knowledge workers to collaborate in the
same system, addressing the well-known problem that ontology experts
are usually not also expert about the domains they have to describe.

However, this field still leaves some non-trivial open challenges. For in-
stance, it would be very useful to give different perspectives of the same
content to different users: ontology-related information would thus be
available to ontology engineers, while knowledge workers would be able
to access the system with another, more domain-related view. Another
problem which still cannot be solved easily is the strong distance between
the open, horizontal, bottom-up wiki editing paradigm and hierarchical,
top-down ontology creation. On one hand, making users agree on con-
cept definitions and interpretations is not easy even for small ontologies,
especially if they are planned to be used in some specific applications
and not just as a plain description of the reality: being able to capture
different point of views but, at the same time, to maintain a coherent
and usable ontology is the first problem. On the other hand, concurrent

41See the material published for the first session of the “Semantic Wiki
Mini Series” event, available at http://ontolog.cim3.net/cgi-bin/wiki.pl?

ConferenceCall_2008_10_23 .

39

2 Background

edits in different parts of an ontology could result in clashes that have to
be resolved: ways for visualizing (or even previewing) the consequences
of any change should be implemented, and again a system to allow the
ontology to remain consistent during changes should be devised.

AceWiki [83] is another wiki-based project that tries to address some
of these problems by using controlled natural language and a smart user
interface. Its aim is to provide an easier user interface and, at the same
time, a way to support expressive ontology languages in a general way.
The controlled natural language that is used for AceWiki is called ACE42

and allows to express even complex axioms in a natural way. ACE sen-
tences can be beyond the expressivity of OWL, so the system automat-
ically tags them with different colors whether they are inside or outside
OWL. Similarly, in order to ensure that the ontology is always consis-
tent, AceWiki checks every new sentence immediately after its creation:
if it is not consistent, the sentence is highlighted and it is not included
inside the ontology.

For what concerns the second class of examples, many applications
have been built which work as collection engines, either to add new
contents to wiki systems or to extract information from them. These
softwares greatly vary in scope and functionalities: for this reason, rather
than trying to be exhaustive, we describe some notable examples offering
different kind of functionalities.

In Wikipedia bots are widely used to automatically create pages, us-
ing knowledge from external sources; for example Rambot43 has been
used to create most of the US city and county articles and keep them
updated. On the other hand, some tools have been proposed to extract
structured information from Wikipedia. YAGO [141], for instance, is
a large ontology built combining facts extracted from Wikipedia (and
in particular from category and redirection pages) with WordNet. DB-
pedia [9] is a project aimed at extracting structured information from
Wikipedia (exploiting infobox templates, categorization information, im-
ages, geo-coordinates, and links to external Web pages) and represent it
in RDF triples. The DBpedia dataset describes almost 2 million entities
and more than 100 million RDF triples, and is interlinked with other
Open Data datasets on the Web44. [68] shows how WikiPedia entries
can be used as reliable identifiers for ontology concepts and proposes the
use of the Wiki paradigm to build ontologies.

42Attempto Controlled English, see [55] and http://attempto.ifi.uzh.ch .
43http://en.wikipedia.org/wiki/User:Rambot .
44http://esw.w3.org/topic/SweoIG/TaskForces/CommunityProjects/

LinkingOpenData .

40

2.4 Participation and semantics

The use of data mining and natural language processing techniques to
improve information representation in wikis has been largely suggested in
literature: [2] uses clustering algorithms to discover missing links among
WikiPedia pages; [162] proposes a tool to automatically generate and
update structured information in WikiPedia infoboxes, processing nat-
ural language in the pages; [123] proposes the use of natural language
processing to semi-automatically annotate wiki content with semantic
relationships.

Magnus’ Map Sources/GeoHack45 is a Web application that gets geo
coordinates as input and returns a collection of links to mapping and
GIS-related services. The tool first converts the coordinates in many dif-
ferent formats (fitting the requirements of the mapping services), then it
builds the output page from a template which is scraped from Wikipedia
(GeoTemplate) and completes it with the coordinates.

Semantic technologies for wikis

The ST4W class includes all those systems that have been defined as
semantic wikis. Basically, semantic wikis are a way to embed a knowledge
model inside a wiki: this, of course, can be done in practice in many ways
and for different purposes and applications (see, for instance, [81]).

The first semantic wiki dates back to 2004. It was called Platypus
Wiki [144] and offered semantics in terms of RDF/OWL metadata that
could be entered into a separate edit box. It was followed shortly by
another wiki called Wiksar [11], which provided the first example of inline
metadata (structured information directly embedded into the wikitext)
and queries.

SweetWiki is a semantic wiki which focuses on hiding semantics to
users, providing them instead with what they could perceive as original
features. It is, however, semantic from the ground up: in fact, it is
based on an OWL schema which describes concepts such as wiki words,
wiki page, forward and backward link, and so on. To keep the interface
friendly, the systems implements a WYSIWYG editor and the concept
of social tagging, allowing users to tag pages and pictures and manage
the system’s folksonomy.

Semantic MediaWiki [151, 82] is an extension of the MediaWiki soft-
ware (the same used by Wikipedia) which allows users to add semantic
annotations based on a OWL-DL model. Annotations can be inserted
with special tags inside the wiki text; each wiki page matches one el-
ement of the substanding ontology and every annotation in the article
45http://tools.wikimedia.de/~magnus/geo .

41

2 Background

makes statements about this single element. The system provides a se-
mantic browsing interface and a language for semantic queries that can
be inserted inline in the wiki.

IkeWiki [127] is a standalone wiki implementation that supports rea-
soning and different levels of formal expressiveness, from RDF to OWL.
It has originally been developed as a prototype tool for the collaborative
formalization of knowledge, hovever the project has evolved and the tool
has become useful for different classes of users: in fact, its interface has
been studied for various level of expertise. IkeWiki allows users to an-
notate pages and links between them with semantic annotations. This
information can then be used for different purposes: advanced queries,
context-specific presentation of pages, and reasoning (either to verify the
consistency of the KB or to infer new knowledge). Compared to SMW,
IkeWiki appears as more restrictive as there is no possibility for sim-
ple users to annotate a link with a predicate that is not defined in a
pre-loaded background ontology. Another difference with Semantic Me-
diaWiki is that IkeWiki stores its semantic metadata separately from the
page content. The main advantage of this approach is that the mainte-
nance of the KB is easier, however its main drawback is that it does not
allow versioning of the metadata.

At least a couple of significative projects have spawned from Ikewiki.
The first one is SWiM [85], a wiki for collaboratively building, editing
and browsing a mathematical knowledge base which relies on the OMDoc
ontology46 for its page format. The second is KiWi47, a project funded
by the European Commission which extends IkeWiki with an improved
rule-based reasoning support, information extraction, personalization,
and advanced visualization and editors.

BOWiki [14] is a MediaWiki extension built to allow biologists to de-
velop a collaboratively maintained knowledge base that automatically
verifies its ontological adequacy. To accomplish this task, BOWiki uses
the Pellet OWL Reasoner, the top-level ontology GFO and the biological
core ontology GFO-Bio48.

OntoWiki [10] is a wiki-like tool for knowledge engineering whose goal
is to decrease the entrance barrier for projects and domain experts to
collaborate using semantic technologies. To accomplish this, it provides
users with a very easy and intuitive user interface, presenting the knowl-
edge base as an information map and providing inline editing for RDF

46http://www.omdoc.org .
47Knowledge in a Wiki, see http://wiki.kiwi-project.eu .
48See http://www.onto-med.de/ontologies/gfo and http://onto.eva.mpg.de/

gfo-bio.html .

42

2.4 Participation and semantics

content. Collaboration is promoted by allowing users to keep track of
changes, write comments about any part of the knowledge base and rate
the popularity of content.

SWOOKI [120] is a peer-to-peer semantic wiki, built on top of the
Wooki software [155]. Its aim is to adddress the problems of scalability,
performance, fault-tolerance and load balancing by replicating wiki con-
tents over a p2p network and allowing for distributed semantic queries.
Moreover, relying on a distributed and redundant architecture it does
not suffer of the censorship problem.

2.4.2 Folksonomies

Folksonomies are a technology that is used inside many online or offline49

systems, rather than a participative system on its own. The term “folk-
sonomy” is generally attributed to Thomas Vander Wal, and refers to
a (usually internet based) information retrieval methodology consisting
of collaboratively generated labels (also called tags) that can be used to
categorize different kind of resources. According to Vander Wal [149],
“folksonomy is the result of personal free tagging of information and ob-
jects (anything with a URL) for one’s own retrieval. The tagging is done
in a social environment (shared and open to others). The act of tagging
is done by the person consuming the information.” Even if folksonomies
have been sometimes described as derived from “folk taxonomies”, they
are actually like the antithesis of taxonomies: categorization is not pre-
defined and exclusive, but is rather inclusive and redefined each time a
user tags a resource with a new label.

Long time before folksonomies caught the attention of the scientific
community, different individuals started to write about them in blogs,
describing their characteristics and the dynamics of their usage [102, 101,
80]. At the same time, the success of the first tag based collaborative
systems encouraged the creation of many other ones [65, 94]. From these
first publications we learn basic concepts about folksonomy structure,
such as the distinction between broad and narrow folksonomies [148]
(eventually shrinking to personomies), their advantages and drawbacks
[97, 118].

Due to their wide acceptance, collaborative tagging systems have caught
the attention of many different research groups. Social sciences study the
“folks” part of folksonomies and try to explain how unconstrained sys-
tems like them can work so well. Cognitive sciences are interested in

49Like in the case of tag-based filesystems [22].

43

2 Background

another explaination of tagging popularity, either in terms of cognitive
processes [136] or behavior [137]. In the latter case, the concept of re-
inforcement is quite important: according to it, users continue to tag
because they get an instant gratification when they do it, having access
to more information than the one they have tagged and seeing them-
selves interlinked within a community. Finally, information architects
such as Peter Merholz [104] make an analogy between the usage of tags
inside a folksonomy and the creation of “desire lines” inside a landscape:
both of them describe how users choose to move before a paved path has
been created.

Working with folksonomies and semantics, many different research ap-
proaches have one assumption in common: as one of the main charac-
teristics of tags is their immediateness (users just write a short string
and that’s all), the interaction model has to be kept the same even when
trying to add or extract semantics from them. This is particularly in-
teresting for two main reasons: first of all, adding new features without
asking users to modify their interactions is not a trivial task (for in-
stance, this could not be done with semantic wikis); then, this technique
has the intrinsic advantage of working as a “plug in” with different kind of
tag-based systems. The main approaches currently present in literature
are:

• extracting structure or semantics from tag-based systems: the goal
in this case is learning more about folksonomies to understand if
it is possible to extract semantics from them. A lot of work has
been done in this field: [58] analyzes the structure of collabora-
tive tagging systems, discovering regularities in the tagging activ-
ity and suggesting a partition of tags in different families, accord-
ing to their purpose; [95] suggests a taxonomy of tagging systems,
showing how their behavior might change depending on their main
characteristics; a tripartite graph model for folksonomies has been
proposed by [105], which allows to better understand and study
the relationships between users, tags and resources; [73] uses mea-
surements and statistics to better describe the structure of folk-
sonomies (and the frequent occurrence of power law distributions),
detect trends and propose a ranking for their elements; [132] de-
scribes the emergence of power laws from tag distributions and
presents an approach for ontology extraction from tagging.

• mapping folksonomies with ontologies: this approach tries to find
matches between tags and concept names inside an ontology. The

44

2.5 Technologies

main advantage is that easy to use free text strings, provided by
the community with a bottom-up approach but lacking of struc-
ture, are matched with formal concepts, built in a top-down way
by few experts, connected to each other through relations, and or-
ganized inside a hierarchical structure. This technique can be used
with static, already existing ontologies, or as a way to create or up-
date an ontology by promoting tags to concepts. [86] is an example
of the first approach: tags from del.icio.us are mapped with con-
cepts inside WordNet to solve ambiguities and provide users with
a hierarchical structure to navigate related tags. [25], instead, pro-
pose an ontology maturing approach which relies, in its most basic
steps, on the emergence of ideas through folksonomies and on the
creation of concepts from tags.

• describing folksonomies with ontologies: in this case, ontologies
are used to formally describe the folksonomy system as a whole.
[60, 59] and [99] introduce the concept of folksology, showing its
main characteristics and advantages (ie. sharing, interoperability,
and disambiguation).

2.5 Technologies

2.5.1 The Semantic Web

The Semantic Web [17] is “an extension of the current Web, in which
information is given well-defined meaning, better enabling computers
and people to work in cooperation”. According to Jim Hendler in a
recent position paper [67], Semantic Web activity is going in two main
directions. One follows the “Web” and focuses on the development of
mostly Web-based applications that use very little semantics but provide
a powerful mechanism for linking data entities together using the URIs
that are the basis of the Web; the standards it relies on are the Resource
Description Framework (RDF) to describe knowledge and the SPARQL
language to query it [117]. The other direction follows the “Semantics”
and looks at providing models that can be used to represent knowledge
in an expressive way; this approach is mostly based around the Web
Ontology Language OWL and, thanks to the use of reasoners, it can also
offer the chance to infer new knowledge from the one that has already
been explicitly asserted.

45

2 Background

The Semantic Web Layer Cake

The technologies at the basis of the Semantic Web are often presented
as a set of layers, stacked one above each other as in a “layer cake” (see
Figure 2.8). The cake has evolved in time and will probably continue
to do that in the future, however—even if the names of some technolo-
gies changed or were introduced from scratch—the general meaning has
remained the same. The layers above ontologies and rules still contain
technologies that are not yet standardized or suggestions about what
should be implemented to realize the Semantic Web, so they will not be
described in detail here.

At the bottom of the cake, URIs and Unicode are the two main stan-
dards every other layer is built on: the first one provides a way to build
identifiers for any kind of resource, while the second is used as the stan-
dard for character sets. XML provides a surface syntax for structured
documents, but imposes no semantic constraints on the meaning of these
documents. RDF is a data model for objects (called resources) and rela-
tions between them; it provides a very simple semantics based on the con-
cept of triples (see below) and can be represented using the XML syntax
even if other, more readable notations exist, such as N3. RDF Schema
is a vocabulary for describing properties and classes of RDF-based re-
sources: for example, using RDFS it is possible to create hierarchies of
classes and properties. OWL extends RDFS by adding more advanced
constructs to describe the semantics of RDF statements: for instance, it
can describe cardinality (i.e. “everyone has exactly one mother”), rela-
tions between classes such as disjointness (i.e. between male and female
gender), or characteristics of properties such as transitiveness (i.e. “the
ancestors of my ancestors are my ancestors too”). SPARQL is a query
language that can be used to query any RDF-based data, including of
course both RDFS and OWL, as it can be represented using the RDFS
syntax. Finally, RIF and SWRL are languages that extend the capabil-
ities of OWL, adding the support of rules into reasoning.

Ontologies

The concept of ontology occurs very often when speaking about Semantic
Web: RDF(S) and OWL are defined as ontology languages, knowledge
is often (even if not always) formalized using ontologies, and many of
the prototypes we developed use them. An ontology, according to T.
Gruber [93], defines a set of representational primitives which can model
a domain of knowledge or discourse. We can formally define an ontology

46

2.5 Technologies

Figure 2.8: The Semantic Web “Layer Cake”.

47

2 Background

as a 4-tuple O=< C, R, I, A > where C is a set of concepts (or classes)
which are subsets of a common domain ∆, R is a set of relations including
both binary relations between classes, called roles, and binary relations
between concepts and datatypes, called attributes, I is a set of individuals
(or ground symbols) which belong to ∆, and A is a set of axioms (or
assertions) in a logical form which are valid in the domain and restrict
the number of possible interpretations of the ontological model.

As an example, if we look at Tim Berners-Lee’s FOAF50 file we can
see that he is an individual of the class foaf:Person (that is, of the class
“Person” as defined by the FOAF ontology), that his given name is an
attribute whose value is Timothy, and that he knows <http://danbri.
org/foaf#danbri> (that is, the URI representing Dan Brickley).

There are different reasons for using ontologies to describe knowledge.
First of all, this description is done formally and can be interpreted by
a machine: this allows information to be used and shared more eas-
ily by many applications. Another reason is the possibility of enabling
computers to provide different kinds of reasoning services about the de-
scribed knowledge. For this reason, ontology languages such as OWL are
based on well known logics, which trade some of their expressivity with
the possibility of running decidable inferencing algorithms in acceptable
times.

RDF

(Resource Description Framework51) is a standard model for data inter-
change on the Web. RDF is built on the following definitions:

• a Resource is anything that can have a URI52. This includes, for
instance, all the world’s Web pages which are identified by a URL;

• a PropertyType is a resource that has a name and can be used
as a property. For instance, speaking about a bookmark, Name
and Date could be a couple of related properties. The fact that a
property type is a resource too allows it to have its own properties:
for instance, we can say that the range for the Date property we

50Friend Of A Friend (FOAF) is a very commond ontology that is mainly used to
describe people and the relations between them (i.e. “knows”). Tim Berners-Lee’s
FOAF file is available at http://www.w3.org/People/Berners-Lee/card .

51See http://www.w3.org/RDF .
52Uniform Resource Identifier. URLs, which are a subset of URIs, are probably

the most common URIs used to refer to a resource. For more information, see
http://en.wikipedia.org/wiki/Uniform_Resource_Identifier .

48

2.5 Technologies

defined for bookmarks is a string that conforms to the XML Date-
Time datatype (so we know how to parse it), has a human-readable
description that says it is the date the bookmark was saved, and
has a label that reads like “Date” in English and “Data” in Italian.

Using these building blocks, RDF allows to express assertions in the
form of triples (subject, predicate, object), where the both the subject
and the predicate are resources while the object can be either a resource
or a constant string, called literal. As an example, if we wanted to say
that the page at URL http://www.example.org/index.html has the
title “My Page” and its author is John Smith, identified by the URL
http://www.example.org/people/123456, we could write:

<http://www.example.org/index.html> (Subject)

<http://purl.org/dc/elements/1.1/creator> (Predicate)

<http://www.example.org/people/123456> . (Object)

<http://www.example.org/index.html> (Subject)

<http://www.example.org/terms/page-title> (Predicate)

"My Page" . (Object)

Typed properties and the triple structure facilitate data merging even
if the underlying schemas differ and support the evolution of schemas
over time without requiring all data consumers to be changed. This
is one of the main reasons why we chose to use RDF for many of our
projects: in fact, this format allows us to easily use the same information
across different applications, being able at the same time to extend it
whenever we need it.

OWL

OWL (Web Ontology Language) [70, 72, 71] is not just a language, but
a whole family of more or less expressive knowledge representation lan-
guages with well defined semantics. [100] describes in detail the features
of OWL, such as relations between classes, cardinality, equality, richer
typing of properties, characteristics of properties (i.e. symmetry and
transitivity), and enumerated classes.

Different versions of OWL are currently available. Version 1 provides
three increasingly expressive sublanguages called OWL Full, OWL DL,
and OWL Lite. OWL Full is not actually a sublanguage, as it contains
all the OWL language constructs and provides free, unconstrained use
of RDF constructs. The “DL” in OWL DL means that this language

49

2 Background

is based on a particular family of Description Logics53, which is called
SHOIN (D) (the meaning of each letter in the acronym is explained in
table 2.2); its restrictions allow the maximal subset of OWL Full against
which current research can assure that a decidable reasoning procedure
can exist for an OWL reasoner. OWL Lite uses all the constraints set by
OWL DL plus some more, wirh the aim to provide the minimal useful
subset of language features that are relatively straightforward for tool
developers to support. It matches the DL SHIF and allows for reasoning
with a lower complexity.

Letter Capabilities

S The following terms can be used: ⊤, ⊥, C∩D, C∪D, ¬C,
∀R.C, ∃R.C. Plus, there is support for transitive roles

H Role Hierarchy, that is the possibility of creating relations
of inclusion between roles: R ⊆ S

O Enumerations : {a1, . . . , an}
I Inverse roles : R−

F Functional roles : >1RC, 61RC, = 1RC

N Number restrictions : >nR, 6nR, = n.R

Q Qualified number restrictions : >nRC, 6nRC, = nRC

Dn Datatype properties (as distinct from roles)

Table 2.2: Description Logics families.

OWL 1.1 is an evolution of OWL which matches the DL SROIQ(D).
It provides many extensions which are almost all related to roles: to role
hierarchy—usually expressed by the letter H—they add disjoint roles,
reflexive and irreflexive roles, negated role assertions, complex role inclu-
sion axioms, the universal role, and finally the construct ∃R.Self , which
is used to express “local reflexivity” of a role.

OWL 2 introduces the concept of profiles, which are defined by placing
restrictions on the OWL 2 syntax. All OWL Lite ontologies are OWL 2
ontologies and so OWL Lite can be viewed as a profile of OWL 2. OWL
1 DL can also be viewed as a profile of OWL 2. The currently available
profiles for OWL 2 are called OWL 2 EL, OWL 2 QL, and OWL 2 RL
and they are described in detail in [106].

53Description logics [12, 13, 30, 63] are a family of logic-based formalisms used for
knowledge representation which are particularly used for automatic reasoning.

50

2.5 Technologies

2.5.2 Tools

For our tests and developments we mostly programmed using the Perl or
Java programming languages, trying both to use and to develop mostly
free (as in speech) software. Thus, as most of our work is built, not just
in research but also during development, “over the shoulders of giants”,
we decided to briefly describe the main tools we used and at the same
time acknowledge their creators.

Reasoner

The main reasoner we used is Pellet54. Pellet [139] does not only provide
standard reasoning services, but it also incorporates various optimization
techniques described in the DL literature and contains several novel op-
timizations for nominals, conjunctive query answering, and incremental
reasoning. Based on the tableaux algorithms for expressive Description
Logics, Pellet supports the full expressivity of OWL DL, including rea-
soning about nominals (enumerated classes). As of version 1.4, it sup-
ports all the features proposed in OWL 1.1, with the exception of n-ary
datatypes.

Programming Frameworks/Libraries

Jena55 is a Java framework for building Semantic Web applications. Of
the different components provided by Jena we mainly used:

• SDB56, which provides scalable storage and query of RDF datasets
using conventional SQL database as a backend. It can be used in
standalone applications and is designed specifically to support the
SPARQL query language;

• Joseki57 is an HTTP engine that supports the SPARQL Protocol
and the SPARQL query language. It can be configured to work
with SDB as a backend and provides a SPARQL endpoint to the
RDF store. We decided to use Joseki as it provides a layer of ab-
straction on the ontologies which allows programmers to access it
just by using SPARQL; moreover, there are already many other

54http://pellet.owldl.com .
55http://jena.sourceforge.net .
56http://jena.sourceforge.net/SDB .
57http://www.joseki.org .

51

2 Background

applications that work with SPARQL endpoints, so this choice al-
lows us to automatically make our data useful for other projects
too;

• SquirrelRDF58 is a tool which allows non-RDF data stores to be
queried using SPARQL. It currently includes support for relational
databases (via JDBC) and LDAP servers (via JNDI). It provides
an API for Java access, a command line tool, and a servlet for
SPARQL http access.

Ontology editors

The two main tools that we used to develop our ontologies were Protégé59

and Morla60. Protégé is a very powerful application, implementing a
rich set of knowledge-modeling structures and actions that support the
creation, visualization, and manipulation of ontologies in various rep-
resentation formats. We mainly used it for the development of OWL
ontologies and took advantage of its inline reasoning features to test our
work. Morla is much simpler but also lightweight and easy to use, and we
mainly used it for the development of small RDF ontologies (when they
were not so small that they could be managed with just a text editor).

Databases

MySQL61 is a very well-known relational database management system,
written in C and C++. Our biggest dataset (the one gathered from
del.icio.us) is stored in a 2GB MySQL database, and the 3564020356.

org website (see Preface) uses the same DB technology.
HSQLDB62 is a relational database engine completely written in Java.

It is multi-platform, small, and fast and supports both in memory and
disk based tables. We chose this engine for some of our projects as it can
easily be run in a standalone mode as part of an application program, in
its same Java Virtual Machine.

58http://jena.sourceforge.net/SquirrelRDF .
59http://protege.stanford.edu .
60http://www.morlardf.net .
61http://mysql.com .
62http://hsqldb.org .

52

2.5 Technologies

Wiki systems

JSPWiki63 is a Wiki system built around the standard J2EE components
(Java, servlets, JSP). We used this software as the basis for our semantic
wiki prototypes for the following reasons:

• it has already been used by other semantic wiki projects, such as
Makna ([39]);

• it is developed in Java, which allowed us to build a semantic ex-
tension using the Jena framework;

• it provided many features such as attachments, ACLs, and plugins;

• it had a live community of developers.

Of course, we also experimented with MediaWiki64 and its semantic
extension65: our research group’s wiki66 is built over these technologies.

Browser

Firefox67 is a well-known, opensource browser, which with about 650 mil-
lion downloads68 is getting more and more used not only by computer-
savvy people, but also by many common internet users. Being open-
source, it has also become a basis for other projects such as Flock69 (a
“social Web browser”, specialized in interfacing with many social applica-
tions) and Google Chrome70. Naming a browser as one of the main tools
for the development of a PhD thesis might sound weird, but Firefox has
actually been precious for us as we built many of our prototypes as its
extensions.

2.5.3 Datasets

del.icio.us

Del.icio.us represents for us both an object of study and a useful dataset
to better understand the dynamics of tags and tag-based systems. To
63http://www.jspwiki.org .
64http://www.mediawiki.org .
65Semantic MediaWiki, see http://semantic-mediawiki.org .
66http://airwiki.elet.polimi.it .
67http://www.mozilla.com/firefox .
68Data gathered from http://www.spreadfirefox.com on September, 8th 2008.
69http://www.flock.com .
70http://www.google.com/chrome .

53

2 Background

gather information from the website we built a scraper71 that first har-
vested user names from the system and then downloaded their full col-
lection of tagged links. The scraper has been built with adequate sleep
times, not to hammer del.icio.us website with too frequent requests, and
error recognition to allow graceful stops whenever the service was not
available. As it could be paused and resumed in any moment, it has been
run not continuously for few weeks. The final result is a dataset contain-
ing information related to about 31000 users, 482000 tags, and 3.7 million
resources. The total number of taggings, that is < user, resource, tag >

triples, is more than 21 millions.

Albeit tiny if compared to the actual size of del.icio.us (which is about
two order of magnitude bigger), the dataset has been particularly useful
for us to understand how folksonomies work and to experiment with some
real-world user data. Some examples of our experimental developments
that make use of this information are available in Section 5.

WordNet

WordNet72 is a large lexical database of the English language. It groups
English words into sets of synonyms called synsets, each expressing a dif-
ferent concept. Every synset has a short definition and relations (which
can be semantic or lexical) with other synsets. As an example, the word
“Web” belongs to seven different synsets as a noun, where one is “entan-
glement (an intricate trap that entangles or ensnares its victim)” and, of
course, there also is “World Wide Web (computer network consisting of
a collection of internet sites that offer text and graphics and sound and
animation resources through the hypertext transfer protocol)”.

WordNet can be accessed online or downloaded as a desktop appli-
cation. It has libraries that allow programmers to use it from many
different programming languages and many user-built extensions. We
used WordNet for three main reasons: first of all, it served as a refer-
ence to verify how many tags in del.icio.us were common English words
(see Section 5.1.1); then, it provided a hierarchical structure to map tags
on and provided a non-flat tag space for users to browse; finally, it has
been the backbone for the algorithms we used to disambiguate tags (see
Section 5.1.2).

71Which is available at http://davide.eynard.it/?p=28 .
72http://wordnet.princeton.edu .

54

2.5 Technologies

[| [

{ | {

"directed_by" : "George Lucas", | "directed_by" : "George Lucas",

"name" : null, | "name" : "Star Wars Episode IV: A New Hope",

"starring" : [| "starring" : [

{ | {

"actor" : "Harrison Ford" | "actor" : "Harrison Ford"

} | }

], |],

"type" : "/film/film" | "type" : "/film/film"

} | },

] | ...

Figure 2.9: An MQL query asking for all the films by George Lucas star-
ring Harrison Ford (left) and the first of its results (right).

Freebase

Freebase73 has been defined as “an open database of the world’s infor-
mation”. It has been built drawing information from large open data
sources, such as Wikipedia and MusicBrainz74, and reconciling it so that
a particular topic appears only once in Freebase and contains all the
information related to it. The result is a collection of structured data
about many popular topics such as movies, music, people and locations,
which can be easily edited online within a wiki-like interface or queried
by anyone with the provided API. The underlying structure of Freebase
allows users to run complex queries using a query language called MQL
(Metaweb Query Language), which uses JSON (JavaScript Object No-
tation) syntax, making it ideal for JavaScript and Python based clients.
The typical query is made by example, that is providing a template of the
structure of the desired data, where all the information we do not know
are simply left blank; the query response will simply fill the template
with the missing information. An example, asking for George Lucas
films starring Harrison Ford, is shown in Figure 2.9.

We decided to use Freebase as a backend for some of our prototypes
for different reasons: first of all, being based on Wikipedia knowledge, it
contains data which is not limited to a specific domain; then, it provides
some structure and semantics that we decided to exploit for our needs;
finally, it is a free source of information which will continuously grow
thanks to the direct contributions of its own users or the indirect ones
coming from the users of other open data communities.

73http://www.freebase.com .
74http://musicbrainz.org .

55

3 Our approach

Our research approach takes into account two different aspects of par-
ticipative systems. The first one is related to the activity system and
includes users—considered both as individuals and as members of a
community—, their objectives, and their tools. The second one, instead,
relates to the possibility of enhancing a system with semantics. In the
current chapter we describe these two aspects, showing our methodology
and providing some hints for designing a new participative system (or
evaluating an existing one) and adding semantics to it. Then we show
why evaluation is not trivial in our case, as it has to deal both with
technologies and with people using them, and we explain how we ap-
proached this problem. We continue describing the main architectures
that we relied on and conclude introducing our prototypes and explaining
the organization of the following chapters.

3.1 Designing a participative system

Designing a participative system is not a trivial task: from a technol-
ogist’s point of view the most important thing might seem to design a
good tool, flexible and scalable enough to enable the community’s activ-
ity, and at the same time stable and secure. However, CSCW1 has a long
history of apparently perfect systems that did not make it, apparently
without any specific reason (see “I love the system—I just don’t use it!”
[15]). Actually, one of the main problems of unsuccessful participative
systems lies in focusing on the tool only, ignoring all the other elements
inside an activity system. The result is that the tool could be technolog-
ically very good, but wrong for that particular activity. Borrowing some
terms from the activity theory diagram (see Section 2.3.4), a tool could
be wrong with respect to

• the subject: as the tool both empowers and limits the subject, a
wrong tool is one which either cannot enable users’ activities or
limits them too much. Some typical errors in tool engineering are

1Computer Supported Collaborative Work.

57

3 Our approach

bad interface, missing incentives, or the requirement for a knowl-
edge which is too specific. A possible solution to this problem could
be a design which is more centered on users;

• the object: the tool should be built to fit the activity, not chosen
with the hope that activities might change to fit it. And if it is true
that many participative systems had success using one particular
tool, this does not mean that the same tool will be enabling for
other kind of activities. As an example, a wiki might be a good
tool to allow the Internet community to build an encyclopedia with
no time constraints, but it is not as good to allow a group of ten
coworkers prepare one single-document relation in one day. To
address this problem, we tried to spot the main characteristics of
participative systems (that we called dimensions, as they could be
used to split them in classes) and derive some design patterns from
them;

• the community: even if in the diagram of activity theory the com-
munity appears as not directly related to the tool, in practice it
is strongly bound to it as far as its rules and division of labor are
coded inside the tool itself. Hovever, different communities might
be more or less suited to use a specific tool: the reasons for this
might include the context, privacy issues, or license issues. More-
over, every community has to be nurtured into participation: for
instance, given two similar activity systems, one might work while
the other might not just because the first started with more con-
tents available to users. Finally, while incentives intuitively repre-
sent a good key to participation (at least with the wide, difficult
to classify user base of the Internet), they are just one of the many
dynamics that might push a particular community into participa-
tion: a more accurate approach would take into consideration also
social dynamics, cognitive factors, information architecture, and
user interaction. In our work, we decided to look at participa-
tive systems from Wenger’s perspective, assuming they are used
by communities of practice and trying to exploit their legitimate
peripheral participation.

3.1.1 User-centered design

The reason why we chose to define the design of the system as “user-
centered” is, of course, related to the literature about human-computer
interaction, but at the same time it aims at recalling some of the “Web2.0

58

3.1 Designing a participative system

design patterns” described by Tim O’Reilly in [110]: users have become
a precious resource as they provide information which is unique and
hard to replicate, so systems have to be designed around them and user
participation has to be encouraged. This means, at the same time, that
tools have to be easy and intuitive to use and that they have to provide
the right incentives to make users contribute again.

For what concerns user interaction, we used the “seven principles of
user-centered design” by Donald A. Norman [109] as a source for inspira-
tion. We then came up with our own principles, which take into account
interfaces, activities, and semantic technologies:

• keep semantics hidden, as far as it is possible: of course, a collab-
orative ontology authoring tool would need its users to know what
they are doing, but an image sharing system does not. In this case
we could assume that most of its users neither know about seman-
tics nor they are interested in learning it. So, one of the main tasks
would be to make the system work without requiring its users to
know its inner details;

• reuse and standardize: when possible, it is better to use already
well known interfaces, metaphors and interaction paradigms. For
instance, we chose to build many of our prototypes as browser ex-
tensions to allow users access them within a familiar environment;

• exploit the power of constraints: sometimes limiting users in what
they can do with the tool prevents them from committing many
errors; moreover, in a collective environment it might suggest a
direction where contributions could converge. Of course, the choice
of the constraints is a trade-off with the flexibility of the tool: in
this case suggestions (such as giving a template for a particular wiki
category or suggesting the most used tags in a social bookmarking
system) might help;

• do not alter the main activity of the group: if a participative sys-
tem has to be used by a group which already has some common
practices, these practices should be studied so that they can be
still enabled by the tool. New features (especially when semantics
is involved) are sometimes not only considered unuseful, but often
not even welcomed if they require users to change the way they
were accustomed to use the system;

• in every case, keep it simple: the system does not need to become
harder than it is. Designers could help users, for instance, by

59

3 Our approach

always making the possible actions clearly visible and by always
showing them at which step of a process they are.

While working on incentives we decided to mostly focus on two as-
pects: instant gratification and system bootstrap. In the first case, we
decided to devote our attention to all those systems that allow collective
intelligence to emerge from user participation, by aggregating their con-
tributions, providing links to related information, suggesting resources
that might be interesting, and so on2. Starting from our findings we
developed the model for collective intelligence that is described below.

Trying to deal with the problem of system boostrap, we found that
currently one of the most implemented solutions (apart from the theoret-
ically trivial one, that is writing actual contents) is starting the system
as an invite only “beta version”: exploiting a community of more mo-
tivated users, filtered thanks to the barrier at the entrance, the system
is tested and at the same time filled with contents, making it ready to
be launched for the wide public3. A possible solution we tested and we
can suggest is the reuse of already existing knowledge to provide, at the
same time, working incentives and the feeling of an already live system.
Freebase, for instance, is using a very similar approach, importing and
converting information from many other data sources; with all these con-
tents already available, it is nurturing a community of “power users” that
are also developers and are helping in showing how useful (and already
used) the system is.

3.1.2 Dimensions of participative systems

To help us in finding many different dimensions that characterize par-
ticipative systems we used the method of the Six Ws4. This list does
not want to be exhaustive and an extension of it is surely going to be
part of our future work, yet we think it provided some good insights in
understanding and designing a participative system.

2[131] is a manual that provides a very practical, however interesting, description of
this field.

3A very recent example is Twine, that opened on Oct, 22nd 2008 after one year of
beta, with about 20000 twines created by its users and about one million items
added to the system.

4Also called “Five Ws and one H”, see http://en.wikipedia.org/wiki/5_Ws .

60

3.1 Designing a participative system

Who

These are the dimensions that are mostly related with users and com-
munities.

What kind of user? Knowing what type of users are going to use the
system is fundamental to design it correctly. For instance, we might be
interested in gathering a community of generic internet users with only
a very basic knowledge about computers, a group of professionals with
very specific interests, or some power users that can use their program-
ming skills to immediately contribute to the system software. Moreover,
we might want to decide if we want to allow anonymous users or not, as
this can change many different dynamics: for instance, being anonymous
could be perceived as an enhancement in privacy, but could make the
public recognition of someone’s contribution totally meaningless. Culti-
vating identity in a community could be a way to address this problem,
without necessarily asking users to provide their personal details (see
[28]).

What kind of community? Knowing the type of community that has
to deal with the system is also very useful. For instance, designing a
system for a generic Internet community or for a corporate intranet is
very different: inside a corporate environment anonymous access could
be disabled, as every user already has to authenticate whenever he logs
into his system; designing for the Internet, instead, the problem of pri-
vacy might be more important, but at the same time the existence of
a category of “bad users” (such as spammers, hackers, or generally ma-
licious users) should always be taken into account. Another dimension
that characterizes participative systems with respect to the community
is whether they are open or closed: they could be accessible by any-
one, only to registered users, or only to few people whose registration
request has been approved by an administrator. This is similar to, but
more general than the previous case. Then, any kind of barrier at the
entrance could be provided before registration approval: this of course
changes the dynamics of the group, as it is going to be built on more or
less motivated users5.

Who is the contents producer? One user or the whole community?
Systems like blogs work thanks to their whole community, but often ar-
ticles are produced by only one person: this is called a “one-to-many”
architecture. In a “many to many”, instead, different users provide con-

5A barrier at the entrance—no matter how simple it was—and a mechanism of in-
centives have provided a good filter inside the 3564020356.org community, which
is basically self-moderated.

61

3 Our approach

tents: some examples are Wikipedia, file sharing systems like YouTube,
and peer-to-peer systems. In both cases the presence of a community
of readers and commenters can act as an incentive, but in the first one
the system is not scalable: there is an intrinsic limit on the quantity of
information that can be produced by one single person, and it does not
matter how popular the system is, in some cases the producer becomes
the bottleneck for the whole system. In this case alternative interactions
for readers should be found, such as allowing them to discuss in forums
or giving them a space to publish their own contents.

Who is the addressee? Reading or, more generally, accessing collabo-
ratively published information is considered as the first level of partici-
pation. This can be given two meanings: from the users’ point of view
it is the first activity they can perform, and interest in the system’s con-
tents is the first incentive they might have; from the system’s point of
view, instead, this means that just the presence of readers might be a
strong incentive for publishers. Thus, knowing and letting active users
know about the group of readers is very important and that could be
done in different ways: the most simple operation is to add a counter
on every accessed resource; then adding comments or a mechanism for
“favorites” gives a more detailed feedback; finally, developing users’ iden-
tities through user accounts and profiles might provide even better in-
centives.

What

These are the dimensions that are mostly related with the object of
the activity (that can be very concrete, such as the final product the
community is building, or very abstract, as the common interest it is
gathered around) and some characteristics of the tool.

What kind of tool is used? If the work has to be done on an already
existing tool, this is the first question that should be asked. As previously
described, every tool has been designed with a main purpose in mind (see
Section 2.1): checking if this purpose fits the group activity provides the
very first evaluation about the system.

Is there a central object? Some communities gather around a com-
mon type of shared object, such as documents or videos. Others have
a central object in the form of a “final product”, such as the collabora-
tive encyclopedia built with Wikipedia. Finally, others have a common
activity, such as listening to music or communicating with friends. The
presence of a common object such as in Wikipedia definitely has to be
taken into account as it definitely impacts group dynamics: in this case,

62

3.1 Designing a participative system

in fact, users have to coordinate their work, to communicate, and to find
agreement over different matters. Wikipedia is a wonderful example of
coordination that is spawned out apparently from nowhere, as the tool
itself does not automatically provide all those constraints that have been
developed by its community only in a second time. Also, it has a very
particular object which is, at the same time, common but not atomic:
even if the final product (the encyclopedia) can be considered as a whole,
many users can contribute at the same time on different articles without
even interacting with each other. The scalability of the project is surely
one of the reason of its success. Conversely, experiments with wikis used
as publishing tools for atomic products such as fiction books went really
bad [96]: the main problem was that it was impossible for the multitude
of users to agree and coordinate even on small parts of the work, and
the final result was incoherent and not homogeneous.

Do users leave persistent traces of their contributions? This is a char-
acteristic of the tool that might become part of the final object. In fact,
while for some systems (such as wikis) it could be very important to
have a “history” for contents as it provides versioning and rollback, for
many others the interaction itself becomes part of the final product. For
instance, comments to a post in a blog or video replies on YouTube are
persistent traces of user contributions that become an important part of
the system’s contents.

How, When, Where

These are the dimensions that are mostly related with the activity.
How do users participate? The type of participation, according to the

taxonomy we defined in Section 2.2, also defines the types of interactions
with the system: for instance, if users contribute with files or comments
they should be given the possibility to publish them; if they have to
collaborate on the creation of some contents they should be also given a
way to coordinate and communicate.

Is participation explicit or not? Contributes from users might be ex-
plicit (i.e. a comment on a blog, a video shared on YouTube) or implicit
(i.e. the traces of a visit left in a website, the preference for one re-
source between many, etc.). Defining whether the participation has to
be explicit or not also helps into defining what kind of incentives have to
be found for users. Moreover, allowing collective intelligence to emerge
from implicit participation is a problem per se: even if many aggregation
algorithms are already known and widely used, every system is different
and might require an in-depth study to find specific solutions.

63

3 Our approach

Does the activity need a high coupling or not? Coupling is considered
as the degree to which individuals rely on each other to accomplish a task.
For instance, a live concert requires a high coupling between members
of the band to play their songs; conversely, the phenomenon of “virtual
bands” has shown that now it is possible to have a group of people playing
together the same song without even knowing each other6. While there
are participative systems which work well even if loosely coupled (such as
most of the sharing systems, where everyone can act independently from
each other), there are many—in particular collaborative ones—where
coupling is essential. In this case it is necessary to provide a support
for user presence, coordination, and communication when needed. For
instance, a multi-user real-time text editing tool like the one provided
by Google Docs could be useful to collaboratively author a document,
however a system like Gobby—which at the same time provides a list of
the participants and allows them to communicate through a chat—might
be even more efficient.

When: is participation synchronous or asynchronous? Depending on
the type of object and participation different interaction models should
be studied: for instance, if the object is atomic (i.e. a shared document)
and many people have to collaborate in a synchronous way, they also
need a synchronous communication system; otherwise, if users can par-
ticipate independently and in different moments they can communicate
asynchronously (i.e. Wikipedia and its discussion pages).

Where does the activity take place? This question is actually a collec-
tion of many more specific ones. For instance, we might be interested into
knowing what is the context of use (i.e. work, home, university, etc.); if
the system is going to be accessible from mobile devices; if the activity
requires users to be connected to the internet or if it can proceed offline
too. Every context might require a different approach on data: infor-
mation has to be tailored for mobile users or depending on the different
context [35]; applications (i.e. offline readers or Desktop clients—such
as Picasa for photos) and technologies (i.e. Google Gears7) have to be
developed to allow offline participation.

Is the system centralized or distributed? A distributed system might
be more reliable on the long term, as it does not have a single point
of failure. However, it also needs a longer time to bootstrap and, as
available resources are directly proportional to the participants, it might

6As an example, search “virtual band” on YouTube or check http://www.youtube.

com/watch?v=KkGJOgM7RDI .
7http://gears.google.com .

64

3.1 Designing a participative system

require targeted incentives to attract the very first “critical mass” of
users.

Why

These are the dimensions that are mostly bound to engagement and in-
centives. While we already spoke about incentives (see previous section),
one of the very first questions we should ask is: do we actually need to
engage users or do they already have their motivations to participate? In
fact, depending on the community users might already be engaged into
an activity: in this case, the purpose of the system should be to take
advantage of this to make them participate more easily.

3.1.3 Collective intelligence and LPP

User contributions are usually considered as the main value inside par-
ticipative systems, as they are unique and hard to recreate. However,
we think that in all the systems characterized by a collective intelligence
the tool that aggregates information, while not as valuable as the infor-
mation itself, can nevertheless be very important. The reason is that the
tool can add its own “intelligence” to the final result, making it much
more valuable than a simple sum of the single contributions (see Figure
3.1). Actually, this is quite an evident fact, as intelligence in the tool
can be easily spotted in many different cases. For instance:

• in the model and the algorithm that are used to provide related
information: as an example, the “related resources” functionality
which appears in many social websites (like the related videos on
YouTube or related tags on del.icio.us) can be provided using dif-
ferent, more or less intelligent algorithms;

• in the possibility to aggregate information coming from different
sources: for instance, tag clouds allow users to see the tags that
are most used inside a folksonomy and, at the same time, access
all the resources which match one particular tag, no matter who
added them to the system;

• in the possibility to infer new knowledge from the one which has
been collected, for instance using a reasoner.

Due to the many different specializations the tool can have, it is quite
difficult to give it a name which fits without being too generic. As the

65

3 Our approach

Figure 3.1: Intelligence as a product of the data sources and the collec-
tion engine.

common point between all the specializations is the collection of data,
we refer to the tool as a collection engine: however, it is important to
note that collection is not the only operation performed but, as shown
in the previous examples, it can be followed by aggregation, inference,
or more generally an elaboration of data.

To design a collection engine, there are some points that we need to
keep in mind. First of all, as in any computer-aided discovery system,
we should consider the machine (in our case the tool itself) as working
on just a model of the system. This means that the collection engine can
only see a part of it, that is the one which is described by the model;
also, access to the information provided by the model is regulated by
the model itself. This might have different consequences, depending
on whether we want to create a new system from scratch or just add
new features to an existing one. In the first case, we might want to
expose (either to some internal collection engine or through an external
API) all the information that we consider potentially interesting: this
could include user and resource information, relations between users and
resources, statistical information gathered from the interactions of the
community with the system and so on. When the work is an extension
of an existing system, instead, the main task is providing the highest
possible value just by taking advantage of what is available. For instance,

66

3.1 Designing a participative system

adding related information by linking the existing one with other data
sources has become a very common task recently: the main reasons
for the success of this approach could be found in the high amount of
information which is already available for free and in the fact that this
partly solves the problem of bootstrapping the system with new contents.

According to activity theory, the tool is built both to enable users
in their activities and to limit them. But activities might change in
time together with user involvement in the community (see Legitimate
Peripheral Participation in Section 2.3.3), so the system has to be flexible
enough to allow tasks which vary in complexity and final effects on the
system: for this kind of interactions we use a model which describes the
collection engine and the different ways users interact with it. Looking
at the system from the perspective of the machine that runs it (i.e.
the physical or abstract machine, or the interpreter), there are three
possible types of inputs: the program, that is the actual code executed by
the machine; the parameters, which—given the same input data—allow
the program to run in many ways (i.e. perform different operations or
generate different output) without the need to modify the code; finally
input data, which are the information that the program elaborates.

To better describe this concept, we take as an example Magnus’ Map
Sources/GeoHack tool, a Web application that gets geo coordinates as
input and returns a collection of links to mapping and GIS-related ser-
vices. The tool first converts the coordinates in many different formats
(fitting the requirements of the mapping services), then builds the out-
put page from a template scraped from Wikipedia (GeoTemplate) and
completes it with the coordinates. The tool is a collection of php scripts
that run on a Web server, so it is a program; it uses a wiki page as
a template for its outputs, so users can customize the way results are
presented just by editing that page; finally, the input data it accepts
is represented by a pair of geographical coordinates which are usually
specified inside Wikipedia pages using another template.

Writing these three inputs requires different levels of knowledge. The
program can be created or modified only by someone who knows (at least
part of) the wiki system, a programming language and the algorithms
and data structures needed to perform the desired actions. Parameters
(in this case MediaWiki templates) usually do not require such an in-
depth knowledge, however they might still contain information which
is related the program and they might have to conform to some specific
formats. Input data, instead, has the lowest requirements, that is, a basic
knowledge about what is being written (e.g., the content of a generic wiki

67

3 Our approach

page).
These three levels of knowledge match three different user classes: the

programmer, that is the person who creates a wiki, its extensions, or a
collection engine; the expert user, who is able not only to edit pages,
but also to create and use templates and customize the way applications
work; and the beginner user, who can create and modify wiki pages,
but is not able to do much more. On the other hand, changes made
at different levels reflect a different impact on the system. A change in
the input data might have a small scope: in a wiki, it can result in just
one or few pages. A change in the parameters might have more evident
consequences (for instance, changing a template modifies all the pages
which use it), however they are constrained by the way the program uses
them. A change in the programs, instead, might modify the behavior of
the application as a whole.

Note that this model does not take into account another very impor-
tant class of users, namely the readers, which most of the times are much
more than the writers: this is due to the fact that we are only consider-
ing users who actively contribute to the system. A possible extension to
our model might take into account another input class, that is metadata,
which can be generated by any kind of interaction with the system: this
would also allow us to describe all those features (like page history and
recent changes in wikis, but also access statistics, ratings and recommen-
dations in many other systems) that allow intelligence to emerge from
very basic user behavior.

3.2 Extending systems with semantics

One of the main advantages of participative systems is that users con-
tribute huge amounts of data. However, most of it is in an unstructured
form, good for human consumption but not interpretable by a machine:
thus, albeit useful, this information cannot easily be processed and reused
inside other applications. On the other side, Semantic Web technologies
usually provide structure and formalisms which allow data to be easily
understood by machines; however, they lack of data and participation,
mainly because of their complexity which acts as an entrance barrier even
for expert users. Thus, a contamination between these two worlds would
provide great advantages to both of them: on one hand, communities
could be exploited to produce large amounts of structured information;
on the other, semantically enabled data could be better linked, searched,
and interpreted by machines.

68

3.2 Extending systems with semantics

No wonder, then, why in the last years the Semantic Web community
has grown such an interest in participative systems. Also, semantics can
be added to any one of them with different purposes and varying degrees,
fitting the needs of each particular community. Basically, we can spot
(at least) the following three levels of “semantification,” according to the
main techniques that are applied to some system’s data:

• link data: the main purpose of semantics here is using well-known
standards and vocabularies to describe data. Currently, the most
used standard is RDF and there are also some very common vo-
cabularies (just to name a few: DC8, FOAF, and SIOC [26]). Once
information is described in these formats, it can be made available
to any application which supports them; also, it is possible to cre-
ate new value just by linking different data items from different
sources. Many efforts and advances have been done recently in
this field: there is now a whole community collaborating on the
W3C SWEO Linking Open Data project, with the goal of sharing
various open datasets as RDF on the Web and connecting differ-
ent data sources with links between their data items. Also, other
projects such as Freebase are gathering information from different
sources, adding semantics to it and sharing it through APIs that
can be easily accessed from any application;

• better describe knowledge: every data-intensive system has to de-
scribe its own contents in some way: semantics allow to do this
more formally, making information easier to search and manage.
The tool which is used to formalize knowledge is the ontology (see
Section 2.5.1): the use of its classes and relationships allows for a
very expressive description of the domain of knowledge and pro-
vides new means to organize, browse and search information;

• infer new knowledge with reasoning: inference is a rational activity
that can be performed by a machine, and consists in finding new
implicit pieces of information as logical consequences of what has
already been explicitly asserted. Reasoners are programs which,
given an ontology as their input, perform different operations on
it, such as verifying its consistency or expanding the set of ax-
ioms with inferred statements (some examples of these programs
are Pellet, FaCT++ and Racer). However, very basic inference
processes are also present in the two previous levels and can be

8http://dublincore.org .

69

3 Our approach

Figure 3.2: The “temple” structure of semantic layers.

performed without using a reasoner. For linked data, an example
is the simple concatenation of relations: if one data source says
that A works with B and another one contains the email address
of B, after the two sources are linked together it is possible to ask
for all the email addresses of A’s co-workers. When ontologies are
used, a basic example of inference is retrieving information about
classes which are more or less general than a specified one inside
the hierarchy: for instance, if a Web page speaks about chihuahuas
and chihuahua is defined as a subclass of dog, then it is possible
to find the page just by asking for all the pages that speak about
dogs.

These techniques can be used, either alone or together with others,
to improve a participative system, but of course there is no strict rule
about which one to apply. On one hand, it might seem that the real
new value in this technology is to “let the machine reason for us,” but
there are still many constraints to deal with: just to name a few, the
problem of scalability with reasoners, the need for absolute precision (one
wrong axiom and all the inferred information might be false), and the
unintuitive formalisms that are so far from our common way of expressing
knowledge. On the other hand, Jim Hendler’s motto ”A little semantics
goes a long way” perfectly summarizes how much can be obtained just
by linking information coming from different sources. This also seems
like one of the current trends on the Web, and it is surely producing a
lot of new useful systems and data.

70

3.2 Extending systems with semantics

When ontologies are involved, semantics can be provided on different
layers with respect to the system: according to our classification (see
Figure 3.2), each layer has its own characteristics and can be used with
different purposes. The lowest level (that is, the one which is more near
to the tool) is represented by system ontologies. As the name implies,
these are the ontologies that are used to describe the system itself. Usu-
ally they are very useful for interoperability purposes, as they can provide
details about the different components and give users a way to easily link
information from one system to another. For instance, if different wikis
adopted the same ontology to describe their pages, with all their compo-
nents and their contents, it would be much easier to extract information
from one system and migrate it to another one; if two folksonomies adopt
the same folksology (as described earlier) it is possible to study the us-
age of tags in a way which is independent from the system they come
from. At the same time, system ontologies provide a good, formal and
extensible interface which can be used both by users and applications
to speak about other programs. For instance, many applications in the
Jena framework use RDF as the main language for their configuration
files: as a result these files are very expressive and easily usable across
different applications of the same framework.

Context ontologies allow to model everything which is not exactly the
tool, but which is related to it due to some particular context of use.
There are different ways these ontologies can be applied: for instance,
a generic ontology about relations between documents could be applied
to the pages of a wiki (as described below for one of our projects); an
ontology about e-zine publishing processes could give shape to an open
editing system to constrain it according to community rules and division
of labor, and so on.

At the following layer we can find domain ontologies, which are very
common in semantically enabled participative systems. These ontologies
allow to describe the contents of the systems, that is the data that is
published inside them, with a formal description of a particular, usually
narrow, domain of knowledge. The main advantage of these ontologies
is that they can be very detailed, providing many useful information
and links between different concepts. However, their specificity is also
their main drawback: while they fit well for very specialized systems
(e.g., a wiki about programming languages), they cannot describe all
the knowledge that is found inside a more general one (e.g., del.icio.us
folksonomy, or Wikipedia). In this case using a lexicon like WordNet is
much better, as it at least provides a taxonomy of all the common terms

71

3 Our approach

inside the English dictionary.
At the topmost layer we find upper level ontologies, which describe

concepts so general that can fit in many different systems. For instance,
ontologies speaking about dates, geo coordinates, unique identifiers (such
as ISBN codes or IMDB ids) can be considered upper level ones. Their
main advantage is that they can act as a common vocabulary to enhance
interoperability between different application and the linking of different
datasets.

3.3 Architectures

3.3.1 The client-server-server architecture

Client-server-server is a friendly name we used for an architecture which
is not novel and is very similar to the one used by Web annotations9,
borrowing from design patterns such as the proxy pattern10, intermediary
architecture [145], and layered systems (as described in [53], Section
3.4.2).

One of the main reasons why we used this architecture is that it al-
lowed us to build our prototypes using a common browser. We believe
that this tool is a very powerful client to access information on the Web;
moreover, people are getting more and more used to it and exploiting
an already well-known tool makes our work on user interfaces and in-
teractions much lighter; finally, last-generation browsers can be easily
extended with plugins and there are already many examples available
on the Web. For all these reasons we extensively used this architecture,
choosing Firefox as the browser and developing extensions for it, con-
tacting Web services developed by us or which were already available on
the Internet.

Our architecture is shown graphically in Figure 3.3 and operates as
follows:

• (a) the browser connects to a chosen website and the user performs
some operations inside it;

• (b) an extension working within the browser gets information re-
lated to the user’s request. It then sends this data to a metadata
server, which reacts accordingly, saving information and/or return-
ing a reply;

9See http://c2.com/cgi/wiki?WebAnnotation .
10See http://en.wikipedia.org/wiki/Proxy_pattern .

72

3.3 Architectures

Figure 3.3: The client-server-server architecture.

• (c) when the client receives the metadata server response, it can
elaborate this information (possibly accessing other service providers)
and then show it to the user.

As an example, the extension might read the current URL and contact
the metadata server to search for annotations about it; the returned
metadata could be the annotations themselves, that are then shown by
the extension overlayed on the currently shown Web page. In another use
case the system could allow users to select some text inside a page, check
for information about it and enrich the page with related contents. Some
examples of our projects using the client-server-server architecture are
an extension which provides an alternative navigation pane for del.icio.us
tags (Section 5.1), a semantic annotation tool (Section 6.2), and a sidebar
which uses Freebase and different Web services to provide site-related
information (Section 6.3).

3.3.2 Wiki extensions

Another very common architecture in our projects is the one that char-
acterizes all of our wiki prototypes (see Chapter 4) and makes use of
JSPWiki.

JSPWiki is a wiki engine written in Java that we extended either
through plugins11 or by defining new classes inside the project itself. On

11See http://www.jspwiki.org/wiki/JSPWikiPlugins .

73

3 Our approach

Figure 3.4: The generic architecture for our wiki extension prototypes.

top of the original backend we added an RDF store, used to manage
all the formal knowledge inside the wiki. We decided to keep metadata
separate from page contents as it allowed to manage knowledge more
easily, even knowing that in this way we would have lost the “built-in”
metadata versioning. Depending on the project, RDF has been saved
into a simple OWL file (especially when the ontology was small and
did not need to be updated) or into a persistent store when we needed
extensibility and scalability. Finally, we used our custom code as a bridge
between the original wiki, which still provides the unstructured page
contents, and Jena, which is used to access the RDF store and provide
reasoning capabilities to the system.

The architecture is shown graphically in Figure 3.4. Every time a wiki
page is requested, JSPWiki code retrieves it from the backend which can
vary depending on the provider used by the system: for instance, pages
could be files on the filesystem, like in the default provider, or could
be stored inside a MySQL database. Then, JSPWiki leaves control to
our extension which uses Jena to get metadata from the RDF store,
elaborates them, and finally shows the enriched output to the user.

3.4 Experimental developments

In this section we introduce some of our past projects, as examples of our
approach. For each of them we provide a short description and a name
which refers to a row inside Table 3.1. This provides a compact view of
the projects’ characteristics: Tool is the tool that has been created or
extended within the context of the project; Expressiveness specifies what
kind of ontology has been used (basically thesaurus, RDF, or OWL); Use

74

3.4 Experimental developments

of semantics shows how or with which purpose semantics has been used;
Architecture specifies which architecture we chose while designing the
system.

These projects will be described in detail in the following chapters, in
the same order we used to introduce them here: the first three appear
in Chapter 4, the next two in Chapter 5, and the last three in Chapter
6. In this way, they are not ordered only by the type of system we
used, but also by decreasing semantics (from the first one containing
light reasoning to the last ones, only aiming at linking data) and, at the
same time, with lower and lower requirements for user interactions (that
is, the systems tend to be more and more automatic).

[SWTemplate] A templating system for resource visualization in a se-
mantic wiki : one of our semantic wiki prototypes, provides users with
templates (similar to Wikipedia infoboxes) which are generated automat-
ically from the underlying ontologies. The information generated with
templates is saved as RDF and can be accessed both offline, through an
RDF endpoint, and inline, allowing users to embed query results in the
text of any wiki page.

[SWAttach] Semantic management of attachments inside a wiki en-
gine: another wiki prototype, automatically extracts metadata from file
attachments and saves them inside an ontology. These metadata can
then be queried offering users the chance to easily find/filter information
which is attached to wiki pages.

[SWContext] Design of a context ontology inside a semantic wiki : an-
other wiki prototype, uses a context ontology which describes relations
between documents such as “complementary” or ”propaedeutic”. Then,
when users browse the wiki, they are offered an interface to access re-
lated documents (note that some relations are determined by inference
too).

[WordFolks] Using WordNet to turn a folksonomy into a hierarchy of
concepts : the project uses WordNet to disambiguate the related tags
(that is, tags co-occurring with a given one) inside del.icio.us and shows
them in a hierarchy. This provides, at the same time, an alternative
navigation interface for users and a way to (partially) solve the problems
of homonymy, synonymy, and spam inside folksonomies. This work has
also been published in [86, 87].

[Tagonto] Improving search and navigation by combining ontologies
and social tags: the goal of this project is to combine ontologies and
folksonomies by automatically mapping (social) tags to more structured
domain ontologies. The automatic discovery of associations is based on

75

3 Our approach

a set of matching algorithms computing similarities. Disambiguation
heuristics are then used in order to debug multiple associations between
tags and concepts in the ontology. This work has also been published in
[18].

[SquirrelIMAP] An IMAP plugin for SquirrelRDF : an adapter tool for
the IMAP protocol, developed as a plugin of SquirrelRDF, which al-
lows users to query IMAP mailboxes using SPARQL. The information
returned looks like RDF, is always current, and can be reused and inte-
grated inside other applications. This work has also been published in
[50].

[SpeakinAbout] Exploiting user gratification for collaborative seman-
tic annotation: presents a new collaborative semi-automatic annotation
approach for Web pages, which requires almost no knowledge about se-
mantics on the user side. Using domain ontologies or structured sources
like Freebase as a suggestion tool for concepts, the tool links annotated
data to a set of online services and resources specific to their related con-
cepts, thus providing an instant reward for users in the form of additional
available information. This work has also been published in [49].

[RDFMonkey] Using semantics and user participation to customize
personalization: the goal of this project is to allow users access their
own personal information (in specific, their browser’s history) and build
custom applications that exploit it. To do this, we exported Firefox his-
tory and bookmarks in RDF and made them accessible both through a
SPARQL endpoint and from within a Firefox extension. As an example,
we developed two plugins: one for the visualization of user history, us-
ing Google’s MotionChart, and one for enhancing browsing with related
information which is downloaded in realtime from Freebase. This work
has also been published in [48].

76

3
.4

E
x
p
erim

en
ta

l
d
ev

elo
p
m

en
ts

Codename Tool Expressiveness Use of semantics Architecture

SWTemplate Wiki OWL Manage Knowledge Wiki plugin
SWAttach Wiki OWL Light Reasoning Wiki plugin
SWContext Wiki OWL Light Reasoning Wiki plugin
WordFolks Folksonomy Thesaurus Manage Knowledge Client-Server-Server
Tagonto Folksonomy OWL Manage Knowledge Other

SquirrelIMAP Other (Mail) RDF Link Open Data Other
SpeakinAbout Other (Annotation) RDF/OWL Link Open Data Client-Server-Server
RDFMonkey Other (Browser) RDF Link Open Data Client-Server-Server

Table 3.1: Classification of our experimental developments according to different dimensions.

77

4 Semantic Wikis

4.1 A Templating System for Resource

Visualization in a Semantic Wiki

Templates are a common tool inside wiki systems which allows users to
show data in a consistent way. Wikipedia makes an extensive use of tem-
plates: for instance, articles about cities use them to provide information
such as Country, State, Area, Population, and so on. Even if templates
were not built with the main purpose of structuring information, it is
still possible to extract part of their contents and give them a semantic
interpretation: DBPedia project does exactly this, extracting structured
information from different Wikipedia components (templates but also
categorization of information, images, geo coordinates, and links to ex-
ternal pages) and collecting them inside a knowledge base which is then
made available on the Web.

Our main purpose in this project was to provide wiki templates built
not only for presentation purposes, but also for the creation and manage-
ment of structured information. The tool is an extension of JSPWiki and
allows users to import different ontologies into the system. When a wiki
page is created or modified, it is then possible to match it with a particu-
lar class: this automatically gives users access to a template showing the
possible properties for that class. Information is then shown by default
as an infobox inside the wiki page, but it can also be accessed in different
ways: the box can be customized during editing and visualization, so that
only the fields that the user considers interesting are shown; information
is available as RDF data and is accessible through a SPARQL endpoint;
finally, a JSPWiki plugin allows users to insert SPARQL queries inside
the wikitext, updating page contents with information extracted on the
fly from the knowledge base.

4.1.1 Project architecture and implementation

This project follows the architecture described in Section 3.3.2: the
WikiContext class inside JSPWiki has been used to call our seman-
tic wiki engine instead of the default one; the class SemWikiEngine,

79

4 Semantic Wikis

Figure 4.1: Class interaction diagram for the semantic template project.

then, manages semantic templates and the knowledge base through the
PersistentOntology class (see Figure 4.1).

Pages in this system are considered as textual descriptions of resources,
while templates provide an interface to show and modify their formal
properties. The system, of course, is parametric with respect to domain
ontologies. We use them as formal definitions for our templates: when
a new page is created, we ask users to choose what class it belongs
to (between the ontologies that are available), then the template fields
are automatically loaded. Pages can also be matched with non-local
URIs, automatically importing information inside their templates from
a remote source.

When a user loads a page, the semantic engine checks if there is a
related resource and shows its properties inside the template: literals are
shown as plain text, while all the resources have a link to their related
pages. In any moment, user can click over a field and modify or add
information to the template.

Our template design followed a very basic, but often ignored, assump-
tion: while ontologies provide a very formal approach to knowledge, as
any other system which is designed in a top-down way they tend to de-
scribe reality from a single perspective which might not be the one every
user agrees on. Now, even if we decided not to allow users to modify
the ontology, we at least wanted them to be able to customize their own
interface to access it: as a result, users can show or hide template fields
depending on their interests. This is particularly useful when a person

80

4.1 A Templating System for Resource Visualization in a Semantic Wiki

Figure 4.2: An example of a customized template, with the “knows” field
active or not.

has to fill the same fields for many individuals and does not want to read
across huge forms, or when a student has to compare similar information
between different wiki articles. An example of template customization is
shown in Figure 4.2.

Once information is saved into templates, it can then be retrieved from
within the wiki page. Thanks to a wiki plugin, users can export template
fields into the wikitext (with a SPARQL query in the prototype, but a
much more intuitive interface is currently being developed): the result is
that information is always current and updates made just in one place
(the template) are automatically reflected in the text referring to it.

To enable reuse of the information published within our wiki and make
it more easily interoperable with other applications we decided to make
template information immediately available through an RDF endpoint.
Every wiki page contains a link that points to its RDF representation:
this information can then be imported into other applications or shown
with a compatible browser, as depicted in Figure 4.3.

4.1.2 Conclusions

In this project we used semantics to allow users to easily save information
in a structured format, using content ontologies and a paradigm (the wiki
template) that was already well known to users. As a use case, we chose
to use the system to document software projects using the DOAP ontol-
ogy: this also makes the generated information easily linkable with other

81

4 Semantic Wikis

Figure 4.3: RDF information can be easily exported from any wiki page
and then shown with an RDF browser.

existing data sources. We changed the user interface so that data could
be added with a WYSIWYG interface rather than with wikitext, and we
allowed users to customize the appearance of templates (i.e., which fields
are shown). One huge difference from normal wiki systems is that there
is less freedom in changing template fields as they are directly loaded
from the ontologies. Actually, we believe that leaving the development
of part of the ontologies to users would be a very interesting example,
however we still lack tools to make it easy for everyone.

4.2 Semantic Management of Attachments

Inside a Wiki Engine

Some wiki systems let users upload files as attachments to a page. This
feature gives users new ways to use a wiki: for instance, pages could
be used as collectors of metadata related to the attached file, or as a
“gathering place” around which users can share different objects. As an
example, a page devoted to a particular document could contain all the
revisions of that document, with user comments and already available in
various formats for consumption from different platforms.

The goal of our project was to provide a semi-automatic tool for the
management of attachments’ metadata inside a wiki system. We de-
veloped a prototype extension for JSPWiki which is able to detect the
file type, extract its metadata and save it inside an ontology for later

82

4.2 Semantic Management of Attachments Inside a Wiki Engine

retrieval. The main advantages of this tool is that the user just has to
upload the file and then the system takes care of everything else: if he
likes, however, he can modify existing data or add new ones. The sys-
tem uses ontologies to describe the hierarchy of multimedia files (to allow
queries like “return all the pages that have audio files attached to them”)
and their metadata (for queries like “return all the pages that contain
files whose author is Davide Eynard”). Finally, it exports its information
through a SPARQL endpoint and in RSS format: this last option allows
the system to behave like a rich, wiki based podcasting system powered
by semantics.

We divided the problem of designing such an application in four main
tasks: distillation, that is the extraction of metadata from multimedia
files and their storage, visualization, editing of metadata from within the
wiki system, and querying of the saved information.

4.2.1 Distillation

To extract information from attached files we used JHOVE1, an extensi-
ble framework which provides functions to perform format-specific iden-
tification, validation, and characterization of digital objects. JHOVE is
implemented as a Java application with a very modular structure. Every
module takes care of one or more specific file formats: for instance, there
is one module to manage the GIF file type (in the two versions GIF87a
and GIF89a), one for PDF files, one for WAVE and so on. A JHOVE
module for a certain file type is in charge of:

• managing the identification pattern by which the file is identified;

• validating the file following some schema;

• extracting meaningful information (metadata), if they are encoded
inside the file.

File types are organized in an ontology that contains a classification
of different formats. Actually information is saved in a taxonomy, where
“File” is the root and file types are the leafs. For instance, the path to
“Mp3” is File->Data->Multimedia->Audio->Mp3. An ontology is used
to store all the metadata that are extracted from a file (i.e. a video
file might have an author, a date, a bitrate, and so on). The process
of extraction and saving of metadata inside the RDF store is shown in
Figure 4.4.

1JSTOR/Harvard Object Validation Environment. See http://hul.harvard.edu/

jhove .

83

4 Semantic Wikis

Figure 4.4: Sequence diagram of metadata extraction and saving for a
file attachment.

4.2.2 Visualization and Editing

Once uploaded, files are shown at the bottom of the wiki page where
they are attached. The wiki code has been modified to allow the display
of file metadata: depending on the file type, different information are
shown. Every piece of information can be modified by users in a very
intuitive way, just by clicking on the field, entering text, and hitting the
Submit button. An example of this is shown in Figure 4.5.

4.2.3 Querying

In our prototype, two methods for accessing attachments have been im-
plemented. The first one is a form that allows users to ask SPARQL
queries and see the results inside an HTML table (see Figure 4.6. The
second is a simpler interface that offers the possibility to specify some
constraints on the author, type, and name of the file, and generates an
RSS feed with the attachments that satisfy the query: this allows users
to subscribe to a podcast of their favorite attachments and be automat-
ically updated whenever a file they might be interested in is uploaded.

4.2.4 Conclusions

Differently from other experiments, this project could be useful as a sup-
port tool for a new kind of activity: instead of using a wiki for publishing

84

4.2 Semantic Management of Attachments Inside a Wiki Engine

Figure 4.5: Metadata automatically extracted from the attachments are
shown inside a wiki page and can be edited by users.

Figure 4.6: The result of a SPARQL query over the wiki attachment
metadata.

85

4 Semantic Wikis

textual contents, the same tool could be used with the purpose of shar-
ing files. With our extension, adding a new file to the library would be
rather easy and, at the same time, thanks to the simple wiki interface
it would also be possible to write a description of the file, add related
information (i.e. links to other related websites), or comments about its
contents.

We designed this extension with the intention of adding the advantages
of semantics without requiring users to know anything about them. The
form for SPARQL queries might seem in contrast with our objective but
it was implemented only for debugging purposes and advanced queries.
Apart from that, interaction with the system would remain basically the
same: users could just write wiki pages and upload their files, waiting
for the system to automatically extract metadata; advanced users could
decide to manually add other information. In both cases, metadata are
saved in the RDF store, where they can be queried or aggregated—thanks
to simplified interfaces—in common formats like RSS.

4.3 Design of a Context Ontology Inside a

Semantic Wiki

Instead of using domain ontologies to describe the contents of a par-
ticipative system (i.e. an ontology about food in a recipe website, the
same kind we used in the semantic template project) or system related
ones to describe its components (i.e. OMDoc inside SWiM, to describe
mathematical documents, or the ontology we used to specify file-related
information in the semantic attachments project), it is possible to use
an intermediate one, that we called context ontology, to describe those
parts of the system that are independent both from the contents and
the system itself. As an example we developed a simple ontology that
describes different relations between documents, such as the fact that
two documents are part of a bigger one (meronimy), that a document
provides an in-depth examination on some topics found in another one,
or that a document is propaedeutical to another one (see Figure 4.7).

An ontology like the one we developed could be used in many differ-
ent systems, as these relations hold for any kind of textual document
and as different but similar relations could be created for other file types
(i.e. package dependances inside a linux distribution or libraries inside a
program). To test our work we used another wiki extension: a new navi-
gation interface has been provided, allowing users to select related docu-
ments or to specify relations between them; reasoning has also been used

86

4.3 Design of a Context Ontology Inside a Semantic Wiki

Figure 4.7: Graphical representation of the reified Propaedeutic relation.

to infer implicit knowledge (e.g., the transitive closure of the “propaedeu-
tic” relation).

4.3.1 Conclusions

This project provides semantics on a more advanced level, that is one
which also implies reasoning. The examples here were very simple, but
nevertheless very useful for users browsing the website. Actually the sys-
tem requires users to interact in a completely new way (that is, specifying
relations between pages), but this kind of contribution is not compulsory
and we thought it as a more advanced action that could be performed by
expert users, more interested into keeping the overall system quality high
rather than just contributing with page contents. The final result pro-
vided by the collection engine is a completely new navigational structure
that is generated on the fly thanks to reasoning.

87

5 Folksologies

5.1 Using WordNet to Turn a Folksonomy Into a

Hierarchy of Concepts

As the amount of information available in the Web grows every day
faster, the task of classification is getting harder, the traditional top
down approach is getting inadequate [133], and the new collaborative
approach of folksonomies is emerging [118].

In folksonomies users can associate freely chosen tags to resources and
in this way they produce knowledge for the entire community. Beside
their dynamism and low cost, folksonomies present many disadvantages:
in particular, their lack of hierarchy limits the possibility of searching
and browsing related information.

Joshua Schachter, founder of del.icio.us, defined it as “a way to re-
member in public”; in folksonomies each user can generally explore two
spaces, the one of his bookmarks and the one of everyone’s bookmarks;
tags can be used to filter items.

As the work of categorization is performed by users, folksonomies are
democratic, scalable, current, inclusive and have a very low cost. On
the other hand, the absence of an authority and of a unique coherent
point of view on the domain bears several limitations: the lack of hier-
archy, the absence of synonym control, the lack of both precision and
recall, the possibility of gaming [80] [132]. While the traditional clas-
sification schemes, based on taxonomies, favor searching and browsing,
folksonomies encourage another paradigm of navigation, based on finding
and serendipity [97].

Despite their strong limitations, folksonomies are rapidly gaining mo-
mentum: according to Clay Shirky1, “The mass amateurization of pub-
lishing means the mass amateurization of cataloging is a forced move.”

As tags are just text strings, with no explicit semantics associated, it
is not trivial to organize them for presentation to the user. The most
common way to show a set of tags are tag clouds, visual representations

1See http://many.corante.com/archives/2005/01/22/folksonomies_are_a_

forced_move_a_response_to_liz.php .

89

5 Folksologies

where each tag is displayed with a font size which is proportional to its
popularity. Tag clouds, however, do not keep into account relationships
among tags or their meaning.

To allow the discovery of interesting and related items many appli-
cations have introduced links to related tags, where relatedness is gen-
erally measured with metrics based on co-occurence data. For example
in del.icio.us, when a user visits the page containing all the bookmarks
tagged with a certain tag, a list of tags related to that one is shown
inside a sidebar.

Flickr, a popular folksonomy for photo sharing, introduced clustering
as an interesting feature to help navigation in the space of a tag. The
system is able to find clusters of related keywords, so items corresponding
to different contexts for that tag are grouped together.

These features are very useful but often insufficient, for different rea-
sons. First of all, they leave the lack of hierarchy problem unsolved:
they build flat spaces of tags, so there is no criterion to organize them
and only a small set of items can be displayed. Furthermore, there is no
explicit connection with the meaning of keywords or semantic relation-
ships among them, that might help users to orient themselves in the tag
space.

An interesting study to integrate a top down classification paradigm
with folksonomies is presented in [119]. Some investigations about the
challenge to derive ontologies from folksonomies are presented in [129]
and [37].

5.1.1 Project overview

The goal of our work is to investigate the possibility of integrating an on-
tology in the navigation interface of a folksonomy, filtering tags through
a predefined semantic hierarchy to improve the possibilities of searching
and browsing. In particular we chose to improve the related tags panel
in del.icio.us; filtering a set of related tags through WordNet noun hier-
archy it is possible to display a much higher number of them, organized
according to a semantic criterion. As WordNet is a semantic lexicon of
English, developed to reflect the semantics of natural language and the
way in which humans classify objects, the relations and categories that
it contains are likely to be immediately understood by most people [51].

The first problem when trying to map tags to WordNet is the one
of tags that are not recognizable as words in the lexicon, even after a
stemming process, and therefore cannot be mapped. To evaluate the
relevance of the excluded data we have collected a large dataset, relative

90

5.1 Using WordNet to Turn a Folksonomy Into a Hierarchy of Concepts

Figure 5.1: The image shows the probability that a tag belongs to Word-
Net, in (inverse) function of its popularity. Along the X axis
are represented tags from our dataset, grouped by 1000 and
ordered by decreasing popularity; the Y axis shows the num-
ber of tags belonging to WordNet for each group of tags.
The most popular tags are much more likely to belong to
WordNet, following a power law distribution.

to about 30,000 del.icio.us users and containing about 480,000 different
tags. Studying these data we found that only about 8% of the differ-
ent tags used are contained in the lexicon, but we also observed that
the most popular tags have a much higher probability of belonging to
WordNet. This distribution in particular follows a power-law curve, very
common in the field of collaborative systems, as showed in Figure 5.1.
Of the 20 million total tagging relations present in our dataset, about
68.1% involve words contained in WordNet. We think this data might be
much increased by using local wordnets in other languages and domain
ontologies to cover more specific terms.

There is then the problem of words that are recognized as belonging
to the lexicon, but not as nouns: these tags also cannot be mapped,
as the hierarchy of WordNet is only defined on nouns. According to
the distinction formulated in [58] among factual, subjective and personal
tags, we can argue that factual tags tend to correspond to nouns, as
nouns fit better to describe factual knowledge, while adjectives tend to

91

5 Folksologies

Figure 5.2: The system architecture.

correspond to subjective tags. Further studies about this issue can be
found in [3]. From a quantitative point of view, our dataset confirms
the intuition that most of the tags, and especially most of the most
popular tags, are nouns. Indeed 85% of the different tags recognized by
WordNet are nouns, while of the over 20 million total tagging relations,
about 64.9% involve WordNet nouns, and just about 3% involve words
belonging to the lexicon without being nouns; in other words this data
tells that, in our dataset, about 95% of the times that a tag belonging
to WordNet is used it has almost one meaning as a noun: the power law
distribution is accentuated for nouns.

The application we have developed is based on a client-server paradigm,
where all the tasks relative to the processing and storing of information
are left to the server and the client has only to manage the visualization
of results. The system architecture is shown in Figure 5.2.

The server is composed of a scraper, that extracts the data from
del.icio.us HTML pages and stores them on a database, a module for
tag disambiguation and a core module that builds the semantic tree of
tags related to a given one, based on the hierarchy of concepts of Word-
Net. On the client side, according to the principle of active navigation, a
JavaScript script executed inside the browser dynamically modifies the
pages visualized by the user, integrating the additional information pro-
vided by the server.

5.1.2 Tag disambiguation

One problem when trying to map tags on an ontology is polisemy: as no
explicit semantics is associated to tags by the users, the same tag can

92

5.1 Using WordNet to Turn a Folksonomy Into a Hierarchy of Concepts

have different meanings according to different acceptation of the word,
and consequently different positions in the ontology. For instance the
word “turkey” may refer to the country or to the animal, and in the
second meaning you could want to distinguish between biological and
gastronomic meaning, according to the context. In WordNet semantic
relationships are not defined among words, but among synsets, groups of
synonyms that represent units of meaning; each word can belong to dif-
ferent synsets according to its different acceptations. The word “turkey”,
for example, belongs to five synsets, where the first one is “turkey, Me-
leagris gallopavo” and the second is “Turkey, Republic of Turkey” .

To properly map a tag to the corresponding position in the ontology
you need first to disambiguate it, in relation with the context in which
it has been used. A fair solution naturally offered by a folksonomy is to
use the other tags associated by some users to the same resource as the
context for disambiguation.

Our algorithm for tag disambiguation acts for each tagged resource in
the following way: the C most used tags for the resource are compared
among them, and for each of them the meaning that is more strictly
related to the other tags is selected; semantic relatedness among tags
is calculated according to a choice of metrics based on WordNet [116]
(adapted lesk, Hirst and St. Onge) and disambiguation is performed
using the Perl library SenseRelate [115]. In the same way the remaining
tags are disambiguated using the first C as a context. This solution is
effective, as it reduces the sensitivity to less used tags, and efficient, as
it avoids the exponential growth of the algorithm complexity with the
number of different tags associated with a resource.

5.1.3 Building the tag semantic tree

The core module, for the construction of the tree of related tags, acts in
four steps: tree building, compression, branch sorting and result output.
All the algorithms developed have linear complexity with the number of
input tags.

The set of tags to be considered is selected by collecting, for each of
the latest N sites associated with the given tag, the M most frequent
tags for that site; M and N are parameters that can be specified in
the HTTP request. The construction of the tree is performed by an
iterative algorithm; for each different tag present in the set of interest in
a particular acceptation, the chain of the hypernyms is created as a path
till the unique root of the noun hierarchy of WordNet and then merged
with the existing tree. At the end of this process the tree is a subpart

93

5 Folksologies

of WordNet noun hierarchy, chosen to contain all the tags of the set of
interest.

As WordNet is very fine-grained, it can take more than 10 steps to
descend from the root to a word; the tree has to be compressed to be
useful for navigation, eliminating the useless nodes. The compression
algorithm performs a breadth-first visit of the tree, in which all nodes
considered unnecessary are deleted and replaced by their children. On
one hand, all the nodes corresponding to high level categories in Word-
Net, contained in a black list, are deleted; the information content of
these nodes is generally too low to be useful for navigation. On the
other hand all the nodes that do not correspond to any tag and have a
branching factor lower than K or have no siblings are replaced by their
children. The default value for K is 2; in this way the structure of the
hierarchy is preserved and at the same time the most specific terms can
ascend in the tree.

The branches are ordered by weight, where the weight of a node is
calculated as the number of resources in the set of interest that have been
tagged with the corresponding word in that acceptation. This guarantees
that the branches of the hierarchy that are most strictly related to the
given tag are shown first to the user. As a last step, the tree is output
by the server in HTML or XML format.

5.1.4 User interface

The system rests on Firefox Browser and Greasemonkey extension to
execute some JavaScript code inside the browser. When the user is
visiting the del.icio.us page for a certain tag, the script connects to our
server to get the semantic tree of related keywords for that tag; as soon
as the information is ready, a new sidebar is dynamically integrated in
the page, showing an expandable tree. For each node of the hierarchy
there are two links, one directed to the del.icio.us page for that tag and
one to the page of the resources tagged both with that tag and with the
given one; the size of each tag’s intersection with the current keyword is
shown in parenthesis and represents an indicative measure of relatedness
for the users. Tooltips guide users showing WordNet definitions of the
concepts corresponding to each node and indicating the destinations of
links.

Figure 5.3 shows the result obtained for tag “pasta”, where all the tags
associated to the latest 300 sites tagged with “pasta” are displayed; in
the picture you can see the first branches (i.e. the most related ones, in
this case those about “food”), that have been expanded.

94

5.1 Using WordNet to Turn a Folksonomy Into a Hierarchy of Concepts

Figure 5.3: A screenshot from the del.icio.us page for tag “pasta”, where
the inner sidebar shows an expandable hierarchy of related
tags, provided by our application.

95

5 Folksologies

5.1.5 System evaluation

We tested the system with different kinds of tags, according to different
dimensions. The first dimension is the specificity of the tag from which
the exploration starts; it is very different to display the space of a key-
word situated in a specific domain or in a generic one. In the first case
the resulting tree tends to be compact and to allow easier navigation,
while in the second case it tends to have a high branching factor and
a high number of first level nodes; anyway, as the branches are always
ordered by weight, the most interesting concepts in relation to the given
one are reachable exploring the first branches, also in case of very gen-
eral keywords. The second dimension is given by the popularity of a tag,
while the third one is given by the semantic field; each semantic field
has its specificity and some of them rest on more conventional and or-
dered sets of words, such as the food context, visible in Figure 5.3, while
some others are more prone to slang and neologisms, such as the one of
software.

Figure 5.4 shows the result obtained for tag “blog”; as “blog” often
refers to a kind of site more than to the content it can be considered a
particular case, and a very general tag as there are blogs almost about
everything. “Blog” is also one of the most popular tags in del.icio.us,
so it is an extreme case also according to the second dimension. We
obtained this result considering the latest 2000 del.icio.us bookmarks
tagged “blog”, and only the 15 more used tags for each of them, to cut
the long tail of less used tags. In the picture you can see the hierarchy
of scientific disciplines expanded.

According to this and other tests, the main problem for scalability
seems to be the high number of nodes in the first level of the tree; some
improvements could be obtained by making the tree compression algo-
rithm more dynamic.

Comparing the related tags suggested by del.icio.us with the results
we obtained, we observed that they are always somewhere in the first
branches in the new sidebar. An exception must obviously be done for
the words that do not belong to WordNet, that are absent in the new
sidebar. Experimenting, for example, with the “Greasemonkey” tag (the
experiment is possible even though the word itself is not contained in the
lexicon) we found that many important related tags, like “JavaScript”,
are not recognized, while other important words, such as “extension”, are
interpreted in a wrong way as WordNet does not contain the accepta-
tion related to software; all the tags for which there is in WordNet an
acceptation related to software have instead been correctly interpreted

96

5.1 Using WordNet to Turn a Folksonomy Into a Hierarchy of Concepts

Figure 5.4: A screenshot from the del.icio.us page for tag “blog”, where
the inner sidebar shows an expandable hierarchy of related
tags, provided by our application.

97

5 Folksologies

by the system. These limitations could be addressed by resting on some
domain ontologies to integrate WordNet and on Wikipedia for recon-
ducting slang forms to more conventional ones (for example, Wikipedia
recognizes “nyc” as an alternative form for “New York City”, while Word-
Net does not).

In many cases synonyms or just different ways of spelling a word hap-
pen to be close to each other and easily recognizable in the tree provided
by the new sidebar: the semantic hierarchy helps to face the problem of
the synonym control to which a folksonomy is naturally prone.

As a last consideration we want to mention the problem of gaming.
It is not unusual in del.icio.us to see the related tags sidebar entirely
mucked up by spam, as we found in some of our examples. Gamers can
trick del.icio.us to gain a good position for the tags they want to show
and, as there are just a dozen tags suggested, the whole sidebar can
easily be compromised. In the new sidebar the problem is embanked: as
a much higher number of tags is shown, the presence of some spam tags
does not make the whole suggestion system unuseful; however, the order
of branches could be gamed.

5.1.6 Conclusions

We have proposed a new approach to integrate the navigation interface
of a folksonomy adding explicit semantics provided by an ontology; we
have developed a tool that uses WordNet to build a semantic hierarchy
that helps users navigate and find related resources in del.icio.us.

We have shown that in this way it is possible to combine some ad-
vantages of the traditional top down approach to classification with the
ones of the collaborative paradigm that is emerging on the Web, provid-
ing richer possibilities of searching and browsing, and dealing with some
of the limitations to which folksonomies are prone, such as lack of recall,
synonym control and gaming.

Our application is actually just a prototype and can be improved in
several directions. The algorithm for the tree compression is one of the
most delicate issues and could be improved by making it dynamic also for
higher levels of the hierarchy, instead of just eliminating words contained
in a black list.

Many improvements might be reached in tag recognition by using local
wordnets in different languages and domain ontologies for specific terms.

As future work, it would be also interesting to use the results of tag
disambiguation, performed by our application, to filter resources and not
only tags; in this way it might be possible, for example, to show, among

98

5.2 Improving Search and Navigation by Combining Ontologies and Social Tags

the del.icio.us bookmarks tagged as “turkey”, only the ones that have
been individuated as related to the geographical acceptation.

5.2 Improving Search and Navigation by

Combining Ontologies and Social Tags

The Semantic Web is the “high road” toward a better exploitation of the
vast amount of heterogeneous data available on the web. The overall
goal is to mediate the access to existing sources, by means of formal-
ized, shared, and explicit representation of the data semantics through
ontologies, and to deliver value added interactions. This “high road”,
appreciated in the academic environments, requires high switching costs
and a wide distributed and coordinated effort, which is hard to achieve in
practice. On the other hand, the recent phenomenon of the Social Web
and in particular of tag-based systems represents a more practical and
viable “low road” toward a better fruition of the web. The goal of the
TagOnto system is to bridge the two roads, by automatically mapping
tag-based systems with the more structured world of ontologies. The
main contribution of our approach is to enhance the user experience by
providing features typical of the “high road” while requiring only limited
commitment, typical of the “low road”, from users and content providers.
The system exploits a rich set of heuristics, ranging from simple string-
distance measures to web-based tag disambiguation techniques, to dis-
cover correspondences between tags and concepts of domain ontologies.
Therefore, the unstructured and uncontrolled nature of the folksonomies—
as often the social tagging systems are named—is balanced by the formal
rigor of the ontology-based component of our system. TagOnto enriches
the user browsing experience by enhancing navigation and tag-based
search with ontology-based search capability, which allows to disam-
biguate tags and to focus the user attention. The system platform is
available for download and testable as an on-line demo2. Both in the
demo and here we use the simple and well-known Wine ontology3 as a
running example. To show system extensibility we integrate in this ex-
ample not only the standard tag engines such as del.icio.us, but also the
wine comunity Vinorati.

2The on-line demo can be reached from: http://kid.dei.polimi.it/tagonto .
3Available at: http://www.w3.org/TR/2003/CR-owl-guide-20030818/wine .

99

5 Folksologies

5.2.1 Related work

Our work is strongly based on the use of ontologies: on the one hand, it
relies on domain ontologies to enhance the expressive power and, more
generally, the usefulness of tags by mapping them with ontology con-
cepts; on the other hand, it relies on an ontology to formally describe
these mappings. For this reason, works which are related to ours can
either involve domain ontologies, used to describe the contents (ie the
data present inside the system) or sytem ontologies, used to describe the
tag systems themselves.

SOBOLEO (SOcial BOokmarking and Lightweight Engineering of On-
tologies, [165]) is a tool which allows for tagging resources in the Web
using ontology concepts and interacting with the ontology, modifying
concept labels and relations. It has an approach which could be de-
fined dual to ours, as it uses ontology concepts as tags while we start
from tags to find their matching concepts. [37] suggests an integrated
approach to build ontologies from folksonomies, combining different re-
sources and techniques like statistical analysis, online lexical resources,
Semantic Web resources, ontology mapping, and functionalities to help
communities achieve and maintain consensus [5] present an approach to
enrich the tag space with semantic relations by “harvesting the Semantic
Web”. This approach makes use of a tool [124] that allows for ontol-
ogy mapping by dynamically locating and using relevant background
knowledge. [36] addresses the problem of translating a folksonomy into
a lightweight ontology in a corporate environment: a 6-step approach
is described, including techniques such as the Levenshtein metric, co-
occurrence, conditional probability, transitive reduction and visualiza-
tion. [114] uses the SIOC ontology in order to represent connections
between tags and concepts from a domain ontology. [87] maps tags from
del.icio.us with concepts from WordNet, and uses this mapping to pro-
vide an alternative interface for browsing tags: instead of a flat tag-space
or a tag cloud, users have access to a hierarchy of tags that allow them
to better find tags that are related to a chosen one.

Gruber [60, 59] models the act of tagging as a quadruple (resource, tag,
user, source/context) or a quintuple with a polarity argument, allowing
to bind tagging data according to one particular system. Thus, tags from
different systems can coexist in this model and it is possible to specify
relations between them, allowing for a much higher interoperability be-
tween tag-based systems. [107] defines a tag ontology with three main
concepts such as Tagger, Tagging and Tag that are used to describe the
tagging activity. This ontology also provides relations such as related-

100

5.2 Improving Search and Navigation by Combining Ontologies and Social Tags

Tag or equivalentTag to define relationships between tags. [77] presents
SCOT, an ontology for sharing and reusing tag data and representing so-
cial relations among individuals. The ontology is linked to SIOC, FOAF
and SKOS to link information respectively to resources, people and tags.
The Tag class can be used not only to represent the concept of a tag, but
also to describe its statistical and linguistical properties. [41] proposes a
method to model folksonomies using ontologies. The model consists of
an OWL ontology, able to define not only the main participants in the
tagging activity (like, for instance, User, Tag and Resource), but also
more complex relations that describe tag variations (like hasAltLabel or
hasHiddenLabel).

5.2.2 Project overview

TagOnto is a folksonomy aggregator that offers services to relate, nav-
igate and combine results of different tag-based systems. The key fea-
tures of the system are: a tag-based search engine, mashing up sev-
eral folksonomies to retrieve resources (bookmarks, images and videos);
an ontology-based query refinement, exploiting a domain ontology, co-
occurence of tags and disambiguation techniques to filter prior results;
and an ontology-based navigation interface, allowing the user to retrieve
further results by graphical navigation of the ontology concepts. The
above features provide two orthogonal and complementary ways, typical
respectively of social and semantic web, to navigate the search results:
associated-tag and ontology-navigation. The ontology is used as a com-

burgundy

Thing

Region

BurgundyBurgundy

Wine

0.3

0.8

"Red"

Context

"Pinot Noir"

"3-5 years

aging"

Figure 5.5: An example of tag to ontology matching.

mon vocabulary and bridges the various folksonomies integrated in the
system as a global schema of a federated database; the system provides
facilities to efficiently load the desired ontology before starting a web
search. The typical user interaction is the following: (i) the user searches

101

5 Folksologies

for a tag, e.g., burgundy (see Figure 5.5), (ii) navigates the concept of
the associated ontology to refine the query, e.g., by selecting burgundy
as a wine instead of as a region, or (iii) makes the query more general by
navigating on more abstract concepts in the ontology. These actions are
intuitively supported by the AJAX interface discussed in Section 5.2.4.

The associations between tags and ontology concepts are automat-
ically discovered by the system, but also added, improved and main-
tained collaboratively. The automatic discovery of associations between
folksonomies and domain ontology, represented as dashed lines in Fig-
ure 5.5, is based on a set of matching algorithms computing similarities.
Disambiguation heuristics are then used in order to debug multiple as-
sociations between tags and concepts in the ontology.

Folksonomies are accessed by using dedicated wrappers exploiting three
main methods to retrieve the needed resources: (i) Web2.0 APIs, (ii) RSS
feeds, and (iii) Page scraping. The first approach, by relying on existing
APIs offered by Web2.0-enabled websites, is our preferred one. In the
second approach, the source of information is an RSS feed parsed and
processed by a dedicated wrapper. The last technique is used when no
other solutions are available; TagOnto uses page scraping to retrieve the
needed information by making extensive use of regular expressions over
the webpages to obtain tags and resources associated with them.

5.2.3 Matching and disambiguation

As sketched previously, one of the main problems in TagOnto is how
to match a tag to a concept in the ontology. Given a tag and a refer-
ence domain ontology, the matching process (i) searches the ontology for
named concepts whose name matches the tag, and (ii) looks for related
terms which may refine the query for a better search. Moreover, (iii) a
disambiguation process is often needed to reduce the noise produced by
the collaborative tagging. Once the association has been created, the
matched concepts are associated to each resource tagged by the corre-
sponding tags. More precisely, given the set T of all the available tags
and the set C of all the named concepts defined in a specific ontology,
the matching is defined as a relation M ⊆ T ×C. The relation M allows
multiple associations between tags and concepts. Figure 5.5 shows an
example of such ambiguity: the term Burgundy might be referred either
to the wine with that specific appellation or the region of France where
that particular wine is produced. To distinguish the two different word
acceptations, TagOnto associates to each matching a similarity degree
by introducing the function s : T × C → [0, 1].

102

5.2 Improving Search and Navigation by Combining Ontologies and Social Tags

To establish the matchings and to compute the similarity degree,
TagOnto relies on the set of matching algorithms shown in Table 5.1.
The matching algorithms can be classified on the basis of their effect
on the set of matchings, in particular we distinguish between generators
which generate new matchings starting from a tag and previous match-
ings and filters which choose the best candidates from a set of matchings.
Another classification considers the metrics used to compute the match-
ing degrees; we can distinguish between language-based matching which
uses only morphological and lexical information such as string-distance
metrics to compute the similarity and semantic matching which uses se-
mantic and background knowledge to create new matchings. Notice that
the matching problem has been extensively studied for ontologies [46] and
many different classifications are present in the literature. In our context,
the main difference is the absence of structure in folksonomies which does
not allow an exploitation of structural similarities between the terms in
the folksonomy and those in the ontology. Language-based generators
use well known string-distance metrics, such as Jaccard similarity and
Levenshtein distance. On the contrary, an example of language-based fil-
ter is the Google Noise algorithm, which suggests possible corrections for
misspelled keyworkd by using the “did you mean” feature of Google. In
a similar way, a semantic generator is the WordNet Similarity algorithm
which computes the Leacock-Chodorow [91] distance metric in WordNet
between the term used in the tag and the concepts of the ontology. In
TagOnto we use the implementation of the algorithm which is used in
X-SOM (eXtensible Smart Ontology Mapper) [34] since it offers some
extensions to handle compound words, acronyms and language conven-
tions which are quite common in both folksonomies and ontologies. Since
TagOnto is supposed to work online and with a fast response time, the
class of syntactic filters includes some rather simple algorithms to select

Language-based Semantic

Generators

Levenshtein Distance
Jaccard Similarity

Google Noise Correction
Concept Instances Similarity

Wordnet Similarity

Filters
Max

Threshold

Graph Connectivity
Neighbors

Google Search

Table 5.1: Some matching heuristics.

103

5 Folksologies

the best candidate matchings for a given tag, some examples are the
threshold filter, which selects only matchings having a similarity degree
greater than a specified threshold, and the max filter which selects the k

matchings with the highest similarity degree. On the contrary, semantic
filters are extremely useful in the disambiguation process since they alter
the similarity degree of a matching by analyzing the concepts correlated
to a tag using the structural information of the ontology. The disam-
biguation process is composed of two steps: (i) given a tag, the most
frequent co-occurring tags are retrieved in order to specify its meaning
(i.e., its context), and (ii) the ontology is analyzed in order to identify the
concept which the closest meaning to the tag in that particular context.

The first process is carried out by the Google filter algorithm which
retrieves the co-occurrent tags by issuing a query into Google and analyz-
ing the first result. The second step, called Neighbors filtering leverages
a common functionality of tag-based systems: the tag-clouds, which as-
sociate to each tag another set of tags whose meaning is correlated to
the original one. After this information has been retrieved, TagOnto
updates the similarity degrees of the matchings. As an example (see
Figure 5.6) suppose we have the tag Burgundy with multiple matching
concepts in the ontology (called root concepts); in first place TagOnto
matches the co-occurrent tags obtained from tag clouds with the con-
cepts of the ontology. The second step leverages the structure of the
ontology by counting, for each matching, the number of links which con-
nect matched concepts with each root concept, producing a vector of
connectivity degrees υ. The last step modifies the matching degrees of
the root concepts according to the connectivity degrees computed in the
previous step. For each matching i, TagOnto computes an offset measure
εi = D[i]

MAX(υ) which is compared with the average connectivity AVG(υ);
if εi <AVG(υ) then the new matching degree is decreased by a factor
α·εi where α ∈ [0, 1] is a configurable discount factor (currently set to 0.2
after the test phase); in the same way, the matching degree is increased
if εi >AVG(υ). If the updated matching degree exceeds the values in
[0,1] the value is truncated to fit the range.

How these heuristics are combined depends on the selected matching
strategy. We provide two different strategies: a greedy strategy which first
invokes the syntactic and semantic generators and then applies the syn-
tactic filters, and the standard strategy which invokes the greedy strategy
and then disambiguates the results by invoking semantic filters. Seman-
tic disambiguation is not always necessary, especially when tagging is
done within small communities of practice which share a common vo-

104

5.2 Improving Search and Navigation by Combining Ontologies and Social Tags

cabulary without many ambiguities. In this cases the greedy strategy
can provide results comparable with the standard one in a shorter time.
Whenever, instead, the user base is large (such as in many Web-based
services) and tags are not restricted to one specific domain, the higher
mapping quality of the standard strategy compensates the higher pro-
cessing time.

Thing

wine region

burgundy

burgundy

yearred

hasColor ages

Burgundy Burgundy(wine)

Burgundy Burgundy(region)

Old

Significance

New

Significance

0.8

0.8

1

0.4

0

Burgundy (wine) -

Burgundy (region)

red

year

Burgundy

(wine)

Burgundy

(region)
red year

0

1

1

0

-

0

0

1

0

-

0

1

0

0

-

Figure 5.6: An example of the disambiguation process.

5.2.4 Project architecture

The overall architecture of TagOnto is logically divided into three dif-
ferent components: a tag-based search engine extensible with plugins, a
heuristic matching discovery engine and a web-based user interface.

TagontoNET: TagontoNET provides core search engine functionali-
ties and takes care of the integration of the results coming from folk-
sonomies. The plugin-based architecture decouples the interaction be-
tween tag providers and TagOnto’s business logic. The system currently
implements seven plugins to interact with some of the most popular
tag-enabled websites such as Flickr, YouTube, del.icio.us, and Zvents.
TagontoNET offers two main functionalities: tag-based resource retrieval
and neighboring tag computation (needed by TagontoLib as discussed
in the following). The results are delivered through a RESTful [52]
web service, implemented in PHP, to further decouple this functionality,
which might be used independently with the ontology-based portion of
TagOnto.

TagontoLib: a Java library implementing the core matching function-
alities of the system. The matching engine developed in Java imple-
ments the matching heuristics and strategies described in Section 5.2.3.

105

5 Folksologies

To overcome performance limitations an effective caching technique has
been built, maintaining recent matching tags and ontological concepts.
As for the previous component, much attention has been devoted to the
modularization of the tool. The communications between this library
and the interface has been, in fact, based on a REST-like communica-
tion paradigm [52].

TagOnto Web Interface: one of the distinguishing features of TagOnto
is its web Interface which offers to the user the support of the Ontology
within a comprehensive view of the results collected from a number of
different tag engines. Users can import new ontologies into the system
just by entering their URIs into a special page. The interface is then
divided into two horizontal portions: the upper one reports the search
results, the lower one is dedicated to the ontology representation and nav-
igation. Each user query triggers searches in both the ontology and the
tag-engines. The results from these two sources are respectively shown in
the upper and in the lower part of the page. This provides a unified view
of the ontological meaning of a tag and the available resources (tagged
with that keyword). It is possible to exploit the support of the ontology
to improve the search by navigating the ontology and thus triggering
a query refinement procedure that will retrieve more specific resources
based on the associated tags.

Figure 5.7: The basic TagOnto web interface.

The interface provides several tabs reporting the results obtained by

106

5.2 Improving Search and Navigation by Combining Ontologies and Social Tags

searching each folksonomy. Textual results are presented in a “Google-
like” way, while for picture results (e.g., Flickr resources) a thumbnail of
the matching image is shown. The lower part of the page is dedicated
to the presentation of the ontological concepts associated to the search.
When a keyword is typed in the search field, a so-called “disambiguation
box” appears in this area, to let the user choose among the concepts
TagOnto computes as best matches. Once a concept has been chosen,
previously mapped tags and resources are shown. The system also pro-
vides a box-based representation of other concepts related to the selected
one, allowing an ontology-based navigation. During this navigation pro-
cess the co-occurence of tags is used to provide feedback to the user and
to suggest further directions for the exploration.

5.2.5 System evaluation

We measure system performance in terms of efficiency of the analysis
and matching process, while an extensive usability study is part of our
research agenda. To measure system efficiency, we stress test TagOnto
when performing the two most expensive tasks occurring at run-time: (i)
the time needed by Tagonto to analyze a new ontology to be deployed,
and (ii) the time needed to automatically generate matchings. Figure 5.8
shows outcomes of our analysis. The time needed to perform an ontol-
ogy analysis depends mostly on the number of concepts and properties
declared in the ontology, with polynomial complexity as shown in Fig-
ure 5.8(a) while, with fixed concepts and properties (i.e., fixed schema),
the number of instances declared in the ontology influences the execu-
tion time linearly as shown in Figure 5.8(b). Figure 5.8(c) shows the
distribution of response time obtained by issuing 344 tag-queries (i.e.,
queries composed by a single term) taken from a set of terms referring
to the wine domain.

5.2.6 Conclusions

In this section we presented TagOnto, a folksonomy aggregator, com-
bining the collaborative nature of Web2.0 with the semantic features
provided by ontologies, to improve the user experience in searching and
browsing the web. The design of the system has been such that very
limited overhead is imposed to users and content providers to enable
these new features. TagOnto key components are a multi-folksonomy,
tag-based search engine, and an ontology-based query refinement fa-
cility, which exploits a domain ontology to filter results and to focus

107

5 Folksologies

0 200 400 600 800 1000 1200 1400 1600

0

100

200

300

400

500

600

700

800

#CONCEPTS + #INSTANCES

+ #PROPERTIES

ti
m

e
(s

)
(a)

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800

INSTANCES

ti
m

e
(s

)

(b)

0 50 100 150 200 250 300 350

0

20

40

60

80

100

trial

re
s
p

o
n

s
e

 t
im

e
(s

)

(c)

Figure 5.8: Tagonto performance.

users’ attention. In the best Web2.0 tradition, these features are deliv-
ered through an intuitive and reactive AJAX interface. The system is
released and demonstrated online, and has been successfully tested on
several domains. Nonetheless, we consider TagOnto a starting point for
further developments and we plan to devote more work on three key
aspects: usability, performance and extensibility.

108

6 Linking Open Data

6.1 An IMAP Plugin for SquirrelRDF

The Semantic Web is a new Web paradigm that aims to make information
accessible to both humans and machines [17], using standard formats for
data and making information available in a formal and structured way.
This means that to make it work inside the current Web it is necessary,
on the one hand, to publish new information so it is meaningful for
machines, and on the other hand to convert old data so they are available
in new, more standard and structured formats.

While both of these approaches are currently being studied by the
Semantic Web community, the latter is probably the one which seems
more challenging from a technical point of view. And while the task
might be difficult for free, unconstrained text, it becomes much easier for
information already published in a structured way. This is, fortunately,
the case of many standard file formats and protocols.

This kind of conversion can be usually done in two ways: the first one
is a batch conversion, and is run once (or periodically) on the whole data
source, while the second one is an online conversion, which is run on the
fly on the single pieces of information which need to be accessed. To be
more precise, tools of this last kind allow users to query the knowledge
base as if it already was described in the destination format, and translate
only the results of the query while they are given as an answer to the
user.

Each of the two approaches has its pros and cons: batch conversion is
better suited if the data source is not going to be updated and whenever
there is the need to work offline (that is, disconnected from the origi-
nal source of data); online conversion requires a live connection to the
data source, however the information it returns is always current and
consistent with the data source.

In this section we describe a conversion tool which allows IMAP mail-
boxes to be queried with SPARQL, as if they originally contained in-
formation in RDF format. The tool has been developed as a plugin of
SquirrelRDF, an application which is part of the Jena Semantic Web
Framework. As an IMAP mailbox is a source of data that is often up-

109

6 Linking Open Data

dated, we perform an online conversion, providing users results which
are always current.

6.1.1 Related work

Since the advent of RDF[89] there have been many efforts to extract
and convert existing information to this format. The World Wide Web
consortium has set up wiki pages1 to keep track of them through a list of
links. The MIT SIMILE project has developed many offline conversion
tools, calling them RDFizers2, which range from e-mail to BibTex, JPEG
metadata, and XML [29]. They also provide a Web service, called Babel3,
which allows for the conversion between different formats.

The SIOC project [26] aims at interconnecting different online com-
munities (such as the ones which gather around forums and weblogs)
through a common ontology and a collection of tools (called exporters)
that convert published information into a common format. These tools
can work not only on Web-based sources like RSS feeds, blogs and fo-
rums, but also on email based ones like mailing lists (see for instance the
SWAML4 research project [54]).

The D2R project [19, 21] uses a declarative language to describe map-
pings between relational database schemata and OWL/RDFS ontologies.
The mappings can then be used to export data from a relational data-
base to RDF (as a batch conversion tool) or to access the content of
non-RDF databases as an online tool, using Semantic Web query lan-
guages like SPARQL5.

The Gnowsis Email project6 provides an adapter to extract RDF in-
formation from emails. Thanks to this adapter it is possible to transform
any IMAP email object (such as a store, a folder or a message) into a
standard RDF model, or extract attachments from an imap message.
In a paper [126] about the Gnowsis Adapter Framework (on which the
Email project is built) the authors provide an interesting classification of
adapter tools. According to the paper, adapters are software tools that
can, on request, extract data from existing structured data sources and
represent them as RDF. They can follow three basic approaches:

1http://esw.w3.org/topic/ConverterToRdf

http://www.w3.org/2005/Incubator/mmsem/wiki/Tools_and_Resources .
2http://simile.mit.edu/wiki/RDFizers .
3http://simile.mit.edu/babel .
4http://swaml.berlios.de .
5http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2rmap/D2Rmap.htm

http://sites.wiwiss.fu-berlin.de/suhl/bizer/D2RQ .
6http://www.gnowsis.org/Projects/gnowsis_email .

110

6.1 An IMAP Plugin for SquirrelRDF

• Graph and query adapters, which implement the interface of an
RDF graph or a query language like RDQL, SPARQL or TRIPLE

• Concise Bounded Description adapters, that can return a small
subgraph that describes exactly one resource in detail

• File extractors, that read files, parse them and return some meta-
data that was extracted from the data stream

According to this classification, SquirrelRDF [140] is a Graph and
Query adapter, as it allows non-RDF data stores to be queried us-
ing SPARQL. It currently includes support for relational databases (via
JDBC) and LDAP servers (via JNDI). It provides an ARQ QueryEngine
(for Java access), a command line tool, and a servlet for SPARQL http
access. For instance, running the command line tool with the following
query (directed to HP LDAP server):

prefix foaf: <http://xmlns.com/foaf/0.1/>

prefix hp: <http://jena.hpl.hp.com/schemas/hpcorp#>

SELECT ?mbox ?manager_name

WHERE

{

?person foaf:name "Davide Eynard" .

?person foaf:mbox ?mbox .

?person hp:manager ?manager .

?manager foaf:name ?manager_name .

}

returns the following result:

--

| mbox | manager_name |

==

| <mailto:davide.eynard@hp.com> | "Craig Sayers" |

--

The servlet tool, instead, generates an XML file containing SPARQL
query results and then uses an XSLT script to format them into XHTML.
The output is shown in Figure 6.1, while the XML code looks like this:

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="xsl/result2-to-html.xsl"?>

111

6 Linking Open Data

Figure 6.1: The HTML output of a SPARQL query, as returned by Squir-
relRDF servlet.

<sparql

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xs="http://www.w3.org/2001/XMLSchema#"

xmlns="http://www.w3.org/2005/sparql-results#" >

<head>

<variable name="mbox"/>

<variable name="manager_name"/>

</head>

<results ordered="false" distinct="false">

<result>

<binding name="mbox">

<uri>mailto:davide.eynard@hp.com</uri>

</binding>

<binding name="manager_name">

<literal>Craig Sayers</literal>

</binding>

</result>

</results>

</sparql>

The advantages of such a tool are quite clear: information looks like
RDF and query results can be easily integrated inside other applications.
As an example, in [164] SquirrelRDF is used to solve the real-life problem
of automatically extracting complex information from an LDAP direc-
tory. In [163] the techical details about this project have been described,
together with a tutorial about setting the system up and expanding it
to provide support to different types of SPARQL queries and output
formats.

112

6.1 An IMAP Plugin for SquirrelRDF

6.1.2 Project overview

Of the many different formats which were already available on the In-
ternet, we decided to focus on e-mails because they provide useful infor-
mation not only about their actual content, but also about the people
who wrote them, the relations between these people (ie. who wrote to
whom) and their dynamics (ie. who replied about what).

Current adapters for emails can be roughly divided in two categories:
those which work on information saved on the client side (for instance
on mailboxes in mbox format, or some application-dependant tools), and
those which work by downloading data from servers (connecting to IMAP
or POP3 servers).

We decided to work on information stored on the server and not on
the client side, because we did not want to stick with some specific appli-
cation or format. Also, as we wanted to access current information, we
chose to build a query adapter for IMAP servers. Gnowsis Email project
looks very similar to the one we had in mind, but it apparently does
not allow to directly query the IMAP server with SPARQL. With this
premises, SquirrelRDF instead seemed to satisfy all our prerequisites, so
we chose it as a starting point to develop our adapter.

The Data Model

To write our IMAP plugin we chose to first study how the existing ones
(RDB and LDAP) worked. In particular, the mapping used by the LDAP
plugin is very compact and efficient and allows to simultaneously spec-
ify search constraints and extract the right attributes from the results
returned by the LDAP server.

Unfortunately, this kind of mapping is not usable for the IMAP plugin.
In fact, there is a huge asymmetry between the way messages are searched
and how fields are extracted from search results, that requires us to
describe the two operations in different ways. Moreover, we wanted to
develop something flexible enough to allow programmers to create new
plugins in an easy way, given similar kinds of problems. So we thought
about a different mapping model (albeit inspired by the LDAP one),
which maps properties specified in the SPARQL query with methods
that are called by our application.

The details of our mapping model can be found in Figure 6.2. Every
imap:Map can have one or more server profiles and one or more prop-
erty mappings. The first ones are used to describe the properties of the
different servers the application can connect to: each server has an alias

113

6 Linking Open Data

Figure 6.2: A description of the IMAP Map and its properties.

114

6.1 An IMAP Plugin for SquirrelRDF

Field name Predicate name SearchTerm (JavaMail) Extract Method (JavaMail)
Body email:body BodyTerm getContent, getBodyPart

Subject email:subject SubjectTerm getSubject
From email:from FromStringTerm getFrom
To email:to RecipientStringTerm getRecipients
Cc email:cc RecipientStringTerm getRecipients
Bcc email:bcc RecipientStringTerm getRecipients

MessageID email:messageID MessageIDTerm getMessageNumber
headers email:header HeaderTerm getAllHeaderLines
flags email:flag* FlagTerm getFlags
Date email:date ReceivedDateTerm getReceivedDate
Sent email:sdate SentDateTerm getSentDate

Figure 6.3: Mapping between email field names, predicates from our
email ontology, JavaMail SearchTerm subclasses and Java-
Mail extract methods.

(which is used inside SPARQL queries to refer to it), an address and
a port to connect to, a username, a password, and a default folder to
connect to if no folder is specified inside the query.

Property mappings are used to match properties with methods: every
mapping contains the name of the property which has to be mapped; a
property type can be specified, so it is possible to run specific actions
over it; also, every property can be matched with three methods (through
imap:method, imap:extract, and imap:parse) which are called inside
the application (more details on it in Section 6.1.4).

The Email Ontology

As described above, our mapping describes connections between predi-
cates used inside SPARQL queries and methods. These predicates come
from an ontology which describes every single piece of information we
can query: in our specific case, the ontology describes emails and their
different fields.

In the first two columns of Table 6.3, the field names for a generic email
and the predicate names we chose for our ontology are shown. In the
third column SearchTerm classes are specified: these are the classes used
by JavaMail (see Section 6.1.4, “The JavaMail API”) to specify the search
terms inside an IMAP query. In the fourth column, extract methods are
shown: these are all methods provided by the JavaMail Message object,
which allow to extract information from the messages returned by the
IMAP server.

Looking at the table, a direct mapping between the predicates and the
classes/methods from JavaMail might seem the most intuitive and the
easiest one. However, we decided to put one more layer of abstraction in
the process, creating mappings between predicates and methods which
use these objects to search and extract information. One of the main

115

6 Linking Open Data

advantages of this approach is the possibility to create many different
methods which get the same pieces of information, but then convert
them in different ways.

For instance, the getFrom method is able to extract the sender from
an email message. However, the From field is built up of a name and
an email address: in some cases we might be interested in both, while
in others we might want to extract only one of them. Using our ap-
proach it is possible to create three different methods (ie. extractFrom,
extractFromName, and extractFromAddress) and match them with three
different properties; also, one might just keep one property and update
the mappings depending on what kind of information a particular query
has to return.

Actually, mappings can be changed quite easily: they are saved in RDF
format inside a configuration file and changing them is just a matter of
editing this text file. Even creating a new mapping from scratch is rather
easy. Once a predicate name is chosen, its mapping can be described like
in the following example:

imap:mapsProp [imap:property email:body ;

imap:method "searchBody" ;

imap:extract "extractBody" ;

a imap:ExactStringProperty ;

] ;

In this case, for instance, we chose to map the email:body property
with two different methods: searchBody to search the IMAP server for
a particular body, and extractBody to extract body information from
the results. Also, this property requires the specified search term to be
matched not as a substring, but as an exact string.

As it appears in the table, the email ontology is very simple and flat
and it does not reuse already existing ontologies. However, as it is de-
scribed only through mappings inside one text file, it is very easy to
change it and make it more complex and compatible with other ontolo-
gies. For instance, it is possible to map the subject with a dc:subject,
the sender with a dc:creator, and the date with a dcterms:dateSubmitted.

6.1.3 Project architecture and implementation

The plugin has a structure which is very similar to the other Squirrel-
RDF components: an RDF configuration file describes the mappings and
all the parameters needed to connect to the server(s); an RDF schema

116

6.1 An IMAP Plugin for SquirrelRDF

Figure 6.4: SquirrelRDF structure.

describes how the configuration file can be built; different classes pro-
vide different ways to access the data (ARQ QueryEngine, command
line, servlet). In this section we describe the main choices we made dur-
ing the design phase and how we implemented them, highlighting the
differences between our plugin and the already existing ones.

The structure of SquirrelRDF is shown in Figure 6.4. From a user
perspective, there are two ways to use the application: the command
line tool and the servlet. Both of them access a configuration file whose
name can be specified as a parameter during startup: this file contains
the mappings and the parameters needed for the plugin to run and its
vocabulary is defined inside another RDF file containing its schema .

As the configuration defines the type of the mapping, once it is loaded
SquirrelRDF can choose which plugin has to be used. Then it parses
the SPARQL queries according to the mappings, retrieving information
from the servers when needed and binding them with the variables used
inside the queries. Depending on the plugin, SquirrelRDF uses different
protocols and APIs to connect to the servers; also, the methods used
to extract information from search results change from one plugin to
another. However, all these differences are invisible to the user, who can
just query the data sources as if they were RDF graphs.

117

6 Linking Open Data

Multiserver queries and preparsing

One of the main purposes of describing email messages with RDF is the
possibility of integrating their information with different and heteroge-
neous data sources. However, of course, we also wanted to provide ways
to integrate the same information with other homogeneous sources, that
is other IMAP accounts, folders, and servers.

For example, one user might have different email accounts from differ-
ent providers, and want to find a particular message without remember-
ing where it is saved. In another use case, one might want to be able to
see at a glance all his new emails, without having to care about where
they are stored. A researcher might need to search in different mailing
lists (folders) if people are writing about the same subjects, or if the
same writers appear in different communities, and so on.

Allowing users to specify servers and folders inside a SPARQL query
means specifying new properties for messages: given a message as a
subject, two new predicates imap:server and imap:folder have been
created. Two main problems arise from this feature extension: the first
one is related to where and how connection data (server IP, port, login
and password) have to be specified; the second is related to how we want
to manage predicates like these inside a SPARQL query.

We decided to associate connection information with a server alias, so
that users just have to specify servers and folders as string literals inside
their own queries. The alias is saved inside the configuration or, in the
case of the servlet application, can be specified at runtime.

The management of “special” predicates or triples is done with a preParseQuery
method. This method is called before the actual parsing inside the
ImapSubQuery class: it checks all the triples in the subquery and if one
of them has a property whose type is ParseProperty then it calls (us-
ing reflection) the matching method from the ParseMethod class. If the
method returns true then the triple has to be deleted from the query,
otherwise it can be kept.

For instance, suppose we have the following lines in the configuration
file:

imap:hasServer [a imap:Server ;

imap:serverAlias "server1" ;

imap:serverAddress "localhost" ;

imap:serverUsername "user01" ;

imap:serverPassword "pass01" ;

imap:serverFolder "INBOX" ;];

118

6.1 An IMAP Plugin for SquirrelRDF

imap:mapsProp [imap:property email:server ;

imap:parse "setServerAlias" ;

a imap:ParseProperty ;] ;

and suppose the user enters the following query:

select *

where{

?x email:subject ?subj1 .

?x email:server "server1" .

}

When the second triple is evaluated this is what happens: given that
email:server is a ParseProperty, the preParseQuery method will call
its matching method (that is setServerAlias, from the ParseMethod

class). This method reads the server alias from the current triple (“server1”)
and whenever the program has to connect to an IMAP server it will do
it using the parameters specified in the configuration file (that is, it will
connect to localhost using “user01” as a login and “pass01” as a pass-
word). Finally, as the method returns the boolean value true, the triple
will be deleted from the query.

SPO queries

An SPO query is a single triple pattern, with optional subject (parameter
"s"), predicate (parameter "p"), and object (parameter "o"). This is
usually inserted in SPARQL queries as a test pattern, or to get all the
triples for the available resources. As the other two SquirrelRDF plugins
did not support these kinds of queries, we wanted to work on this to see
if we could provide some useful contribution to the project we borrowed
so much from.

The default behavior of SquirrelRDF (at least for its LDAP plugin) is
to build a mapping between the variables that appear inside the SPARQL
query and the values that are extracted from the data source.

The mapping is done inside the ImapSubQuery class using a list of
HashMap objects. Their keys are String objects containing the variable
names; their values are Jena Nodes (com.hp.hpl.jena.graph.Node)
containing the pieces of information extracted from email messages. Ac-
cording to this model, the results can be seen as many rows inside a
database table, where each binding specifies in which column a particu-
lar value has to be saved (Figure 6.5).

119

6 Linking Open Data

Figure 6.5: A result from a normal SPARQL query.

Figure 6.6: A result from an SPO query.

120

6.1 An IMAP Plugin for SquirrelRDF

When an SPO query is issued, the results cannot fit into rows anymore,
but rather in blocks: in our particular case, every email message has
many rows describing all its properties one by one and their values. So we
decided to translate this with a multiple bindings data structure (Figure
6.6), which can hold all the results returned by every single message (and
which, in the simplest case, can just be a block made of one row).

To manage this kind of queries we took advantage of the prepars-
ing feature: the variable triple is detected in advance, deleted from the
query and a flag is set to warn that a special query has been issued.
Then, for each message that satisfies the search constraints (potentially
all messages), a set of fields is extracted and transformed into bind-
ings. It is possible to change how this set is built just by toggling the
CheckProperty type inside the configuration file: this allows to limit
data transfer and optimize performances.

As an example, suppose we have the following lines in the configuration
file:

imap:mapsProp [imap:property email:subject;

...

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:from;

...

a imap:CheckProperty ;];

imap:mapsProp [imap:property email:date;

...

a imap:CheckProperty ;];

and that all the other properties are not of this type. Then the results
of the query will include only these three predicates, when present.

According to this model, the main limit in the implementation of SPO
queries is the server providing the information. In case of unconstrained
queries, it should return all the elements it contains: while this is feasible
with IMAP, it could be impossible with other servers.

6.1.4 Software details

The JavaMail API

As described in [126], an adapter tool might depend on the data source
(that is, on its format and the ways to access it), so a preliminary analysis

121

6 Linking Open Data

is needed. Fortunately, email is a mature standard and IMAP protocol
is well described by its RFC [33]. Moreover, the JavaMail API7 provides
an easy way to access an IMAP server which is compliant enough with
the protocol, so we chose it as a gateway between our tool and IMAP
servers.

The main JavaMail API classes we used are IMAPStore and IMAPFolder:
the first one is used to manage connection (plain or SSL, with IMAPSSLStore)
and authentication, and to specify which is the current folder; the sec-
ond one offers all the methods needed to manage messages saved inside a
particular folder. Between these, the search method proved to be partic-
ularly useful for our purpose of building a SPARQL-to-IMAP translation.
In fact, even if filtering can be done client-side by the SPARQL inter-
preter, we decided to take advantage of advanced IMAP search features
too: this allows users to pre-filter messages on the server side, lowering
the number of bytes they have to download.

The search method requires a SearchTerm object as input and returns
an array of Message objects as an output. SearchTerms are objects which
follow quite straightly the RFC specifics: there is one for each type of
field one might want to search and it is possible to join many of them
through AND terms. Messages are objects which provide all the methods
needed to extract the different components of an email message. The
third and fourth columns of table 6.3 show the mappings between the
different email fields, SearchTerms and Message methods.

Class structure

The IMAP plugin for SquirrelRDF is composed of eight classes (plus two
“main” ones which implement the command line and the servlet tools).
A brief description of them follows:

• ImapMap class defines the schema of the configuration file. Actu-
ally, the RDF schema is defined inside an RDF file, then the class
is created automatically by the schemagen tool. Once built, it pro-
vides all the vocabulary definitions needed to describe the RDF
mapping model inside the Java application.

• ImapQueryEngine and ImapSparqlMap are mostly refactorizations
of the original classes used for the LDAP plugin. The first one ex-
tends the ARQ QueryEngine object, providing access to the query
plan elements; the second one analyses them, dividing the queries

7http://java.sun.com/products/javamail .

122

6.1 An IMAP Plugin for SquirrelRDF

in blocks of triples who share the same subject, and calling the
ImapSubQuery class (see below) to work on these blocks. This
grouping by subject comes very useful to us, as we are mostly
dealing with email messages and it is much more efficient to get all
the information about one message at once.

• ImapSubQuery is the heart of the IMAP adapter. It gets “subquery”
elements (that is, the groups of triples which share the same sub-
ject), builds the IMAP queries, extracts the required fields from
downloaded messages, and finally creates and manages the bind-
ings between SPARQL variables and their values.

• MatchMethod, ExtractMethod and ParseMethod are the classes
which contain the methods used in the mappings. They are all in-
stantiated inside the ImapSubQuery class, and their usage is better
described in the following section.

• CfgManager is the class used to manage the pieces of information
which are common between all the other different classes. Cur-
rently, it contains the RDF Model object which describes the map-
ping and all the methods needed to access it.

Reflection

In our particular case, reflection is used to manage the dynamic calling of
methods from some particular classes, allowing users to specify the name
of these methods in the configuration file that is loaded at runtime.

The three main uses of these methods are search, extraction and
preparsing. The MatchMethod class contains all the methods that build
up the SearchTerms used to search email messages on the IMAP server.
The ExtractMethod class contains the methods used to extract pieces of
information from an email message (such as the subject, the body and
so on). The ParseMethod class contains methods that are called in a
subquery preparsing phase, for instance the ones which set the server or
the folder for the current query.

The first step we accomplish is instantiating the class with the right
parameters: all of them require at least a CfgManager object and the cur-
rent triple; ExtractMethod also requires the current message to extract
information from, and ParseMethod needs the current ImapSubquery to
change some of its parameters. Once an instance of the class is created,
it is then possible to call its only public method, called run.

123

6 Linking Open Data

The run method first finds the name of the right method to call, ex-
tracting the predicate from the triple and then matching it with the con-
figuration. Then it gets the method from its name using getClass().getDeclaredMethod

and invokes it. Every single method has then access to the configuration
model, the triple, and the additional parameters, as they had been saved
into private attributes when the class was instantiated.

As an example, suppose we have the following lines inside the config-
uration file:

imap:mapsProp [imap:property email:subject;

imap:method "searchSubject" ;

imap:extract "extractSubject" ;

a imap:ExactStringProperty ;];

imap:mapsProp [imap:property email:body ;

imap:method "searchBody" ;

imap:extract "extractBody" ;

a imap:ExactStringProperty ;

] ;

and suppose the user enters the following query:

select *

where{

?x email:subject "test" .

?x email:body ?body .

}

When the query is parsed, predicates are extracted from the triples
and the matching search methods are called if the object is not vari-
able or if the variable is bound to some value: in this case, only the
subject has been specified so only the searchSubject method (from the
MatchMethod class) is called. Then, when the IMAP server returns the
results of the search (in this case, all the messages whose subject contains
the string “test”), the extract methods matching the specified predicates
(extractSubject and extractBody from the ExtractMethod class) are
called. Moreover, as both the predicates are ExactStringProperties and
the subject has been specified, the application will also check that, of all
the messages returned by the IMAP search, only the ones whose subject
actually is “test” will be returned.

The main advantage of this technique is that it is very flexible and
allows users to change drastically the behavior of the application with

124

6.1 An IMAP Plugin for SquirrelRDF

few and simple changes. For instance, alternative “searchFrom” methods
can be built to extract the whole From field, only the address or only
the name of the sender; then the user can change the method that has to
be called just by updating the matching string in the configuration file.
Moreover, methods can be used not only to return a value formatted in a
particular way, but also to perform particular actions inside the system
(such as modifying the configuration or retrieving information outside of
the current triple).

This solution also has some drawbacks: in fact, to avoid managing too
many particular cases, during the design phase it is better to define some
standards and constraints in method calls, losing part of their flexibility.
For instance, we decided to keep the type of the returned values fixed for
all the methods in a single class (SearchTerm for MatchMethod, String
for ExtractMethod, Boolean for ParseMethod) and we used roughly the
same parameters for all of them. Anyway this is not a huge limitation
in our case, and we think it might be relaxed in more complex cases, at
the cost of more type checks inside the application code.

6.1.5 Tests and evaluations

To test the application, we chose to feed it different families of queries:

• basic ones, which just ask for properties of email messages;

• queries using OPTIONAL clauses;

• queries using FILTER clauses;

• SPO queries;

• multiserver queries, mixing information between different servers
and

• folders or merging it with UNION clauses.

The application returns the expected results; however, during the tests
we had to face some IMAP limits and found some workarounds for them.

Exact String Search

The search function within IMAP does not match exact strings, but just
searches for substrings within email fields. This is particularly limiting
because, for instance, when you write the triple

125

6 Linking Open Data

?x email:subject "This is a test" .

you expect only messages whose subject is (and not contains) the speci-
fied string. A workaround for this problem consists of checking the result
messages before extracting information from them: if a particular field
matches with a property defined as ExactStringProperty inside the
configuration file, then it is compared with the result and if the strings
do not match exactly the message is dropped before any other evaluation.

Date Search

The date search function provided by IMAP is not precise, that is it does
not take into account time but just returns all the messages received or
sent on one particular day. Of course, a fix similar to the previous one
could be implemented for date fields. However, we found a workaround
to this problem : specifying the date constraint both in the query triple
and in the FILTER allows to obtain the expected result.

Server lag

Usually, filtering results with just a FILTER clause is not very efficient:
this is due to the fact that in this case all the messages are downloaded,
then the filter is applied on them. What we would like to have, instead,
is a preliminary filter on the IMAP side which would allow us to down-
load only the messages we are interested in. To accomplish this task on
message bodies (which are usually the heaviest part of emails to down-
load), we created an ad-hoc predicate that we called imap:bodyfilter .
This predicate maps to the very same method used for imap:body, but it
does not require the string match to be exact. In this way, messages are
first filtered with a normal substring search on the IMAP server, then
they are FILTERed with a regular expression. Of course, this solution
cannot be easily applied with very complex regular expressions, but is
useful in most common cases.

OPTIONAL subqueries

Queries which contain an OPTIONAL clause are usually managed in a
more complex way than in the basic case: the non-optional part is first
evaluated, then for all the results the OPTIONAL ones are, resulting
in our case in N × M searches on the IMAP server (where N is the
number of results, and M the number of optional clauses). This raises a
big performance problem, which can become more serious depending on

126

6.1 An IMAP Plugin for SquirrelRDF

Figure 6.7: A Pipe extracting email authors from a mailbox and search-
ing for them on Yahoo.

the connection speed between the client on which SquirrelRDF runs and
the IMAP server. Our solutions worked primarily on disabling optionals
when possible and trying to return empty results instead of null ones,
but we think that further study is needed on this topic.

A mashup test

One of the main advantage of SquirrelRDF is that the information ex-
tracted from the IMAP server is provided in very standard and common
formats such as RDF and XML, so it can be easily reused within other
applications. As an example, we developed some very simple mashups
with Yahoo Pipes8 which get email data from the servlet, augment them
with Internet searches, and then publish everything in standard formats
such as RSS.

These tests gave us some very interesting results: first of all, as Squir-
relRDF allows to automatically convert structured information into RDF,
querying the IMAP server and connecting the results to a mashup tool

8http://pipes.yahoo.com .

127

6 Linking Open Data

like Yahoo Pipes is really easy and fast. In fact, the Fetch Data widget
allows users to load any XML page and extract information from it: we
used this feature to download SquirrelRDF servlet results page and auto-
matically extract the list of bindings. Then, information can be parsed,
filtered, and reused inside other plugins.

This chance of redirecting information from one service to another
immediately proved to be quite useful: for instance, we used it to au-
tomatically extract all the authors from the emails, search them on the
internet and provide the results of these searches as additional informa-
tion about them. The final product is a document which contains the
list of authors, followed by a link to a page which is related to them, and
a brief summary of that page.

Finally, as these new data can be published in very common formats
such as RSS, they can be read, shown or furtherly processed by many
different applications. As an example, we imported the results of the
previously described pipe as Firefox Live Bookmarks, so the additional
information about email authors is always available within the browser.

6.1.6 Conclusions

The plugin we developed gives the expected results and integrates well
with the SquirrelRDF application. Performances are good on the local
IMAP server, and they are expected to be more than acceptable on
a remote one. Information returned by the application is current and
provided in a standard (RDF/XML) format, so it can be easily shared
and reused inside other applications.

As a planned future work, as there are still some limitations in the
model (in this very moment it only works with flat email ontologies),
we have begun to implement a new version which will enable more com-
plex ones. By flat, we mean that we still cannot deal with second-level
relationships: for instance, while we can answer a query like

select ?from where

{

?x email:from ?from .

}

where ?from is a variable containing an email address, we cannot answer
another like the following:

select ?realname ?address where

{

128

6.2 Exploiting User Gratification for Collaborative Semantic Annotation

?x email:from ?from .

?from email:realname ?realname .

?from email:address ?address .

}

where ?from is an anonymous node linking to a real name and an address
value.

Our test queries showed that connections to the IMAP server are the
bottleneck in performances of SquirrelRDF: for this reason we are plan-
ning to optimize them with caching (both of connections themselves and
of search results). Also, we have already started to work on a new plugin
which would use the same kind of predicate-to-method mapping: this
plugin will connect via HTTP on a Twiki website and allow users to
access wiki contents with SPARQL queries. Finally , we are planning to
experiment more with mashup services and build some custom ones to
enrich and merge all the information we can extract thanks to Squirrel-
RDF.

6.2 Exploiting User Gratification for

Collaborative Semantic Annotation

One of the biggest challenges for the Semantic Web community is trying
to add semantics to information which has already been published in
the form of unstructured text. Many approaches have been tried to
add semantics to unstructured pages, and the idea of annotating Web
contents seems a good one, allowing for a real “read-write Web” where
any user or machine can add metadata to any piece of information.

While both automatic and manual annotation systems still present
some open issues (just to name few, word disambiguation [121] for the
former ones and lack of precision [45] for the latter ones), the semi-
automatic approach currently seems the most feasible. However, at the
present time even this kind of systems still lack that wide acceptance that
would make a semantic annotation system really useful on the World
Wide Web.

Our project starts with the assumption that one of the possible rea-
sons of this is that these systems do not provide enough advantages to
motivate the user efforts to make them work. Trying to overcome this
problem, we decided to increase user motivation building an easy and
rewarding annotation tool.

To do this, we envisioned a collaborative semi-automatic annotation

129

6 Linking Open Data

approach for Web pages, which allows to connect pieces of unstructured
text with standard concepts without requiring specific knowledge about
semantics; as a result, annotated data become automatically linked to a
whole set of services and resources specific to their related concepts, thus
providing an instant reward for users in the form of additional available
information.

6.2.1 Related work

Several tools and approaches exist to create annotations of both Web
resources and abstract concepts: [122] provides a survey of the main
semi-automatic annotation platforms, while [112] presents a unified for-
mal model, able to describe and integrate annotations inside traditional
documents, semantic wikis, semantic blogs and collaborative tagging sys-
tems.

Our project shares one basic principle with collaborative tagging: users
annotate for themselves, but the system automatically shares personal
annotations between users so that everyone contributes to the overall
value of the system. At the same time, the differences between collabo-
rative tagging systems and ours are rather strong: first of all, the gran-
ularity of our semantic annotations is much higher, as it involves single
words inside a Web page instead of more complex kind of resources; more-
over, users in our system cannot annotate using unconstrained strings,
but they have to choose one concept from a list of suggested ones. This
last point is particularly important, as it defines a completely different
annotation paradigm: while tagging is bottom-up and flat, our seman-
tic annotation is top-down and hierarchical, with all its advantages and
limitations [133].

Annotea [75] is a semantic annotation tool which enhances collabora-
tion via shared metadata based Web annotations, bookmarks, and their
combinations. It uses an RDF based annotation schema for describing
annotations as metadata and XPointer9 for locating the annotations in
the annotated document. Different client softwares for Annotea have
been built: between these Annozilla10, created as an extension of the
Mozilla browser.

KIM [78] is a software platform for automatic annotation, indexing
and retrieval of information. Its approach is based on the assumption
that named entities [32] have to be handled in a special way, as they
denote particulars (individuals or instances) while other words denote

9http://www.w3.org/XML/Linking .
10http://annozilla.mozdev.org .

130

6.2 Exploiting User Gratification for Collaborative Semantic Annotation

universals (concepts, classes, relations, and attributes). It then uses NLP
to recognize and identify them inside a text, with respect to a predefined
ontology.

MnM [150] provides both automated and semi-automated ontology
driven support for annotating Web pages with semantic contents. The
annotations are written as markup inside a document. Magpie [40] uses
an ontology infrastructure to semantically markup Web documents on-
the-fly. Both of these tools work as browser extensions and provide new
pieces of information related to the annotated text, but both seem to
get these information just from the ontology, and not from external data
sources.

Revyu [66] is not a generic annotation tool, but rather a reviewing
and rating Web site. We consider it related to our work for its attention
towards Linked Data principles and best practices [16, 20]. This system
does not only work as a service usable by humans, but also provides
information in a reusable format that can be easily integrated with other
data.

Gnosis11 is probably the project which is most similar to ours. It
works as a Firefox extension and when a Web page is loaded inside the
browser it immediately locates key information such as people, organi-
zations, companies, products and geographies hidden within the text. It
then highlights these concepts in the page and provides links to specific
search engines which change depending on the resource type. One of
the main drawbacks of this tool is that it relies on NLP and on a read-
only knowledge base, both for what concerns named entities and for the
search engine list. While this is surely convenient for kickstarting the
application, active user participation could make the tool more precise
and powerful; moreover, it could help to disambiguate strings that match
many different concepts.

6.2.2 Project overview

We started our project with the assumption that one of the possible
reasons why many semantic annotation systems still do not have a wide
acceptance between Internet users is that they do not offer them much,
or at least not much enough to motivate their efforts for using them.
The question we try to answer is: how can we exploit the concept of
gratification to make users semantically annotate unstructured text?

To the best of our knowledge, available semantic annotation tools cur-

11http://gnosis.clearforest.com .

131

6 Linking Open Data

Figure 6.8: Some possible links for “Harry Potter”, when considered as a
book.

rently provide some kind of reward to the user in the form of additional,
concept-specific information that is accessible when a piece of text is
annotated as being an instance of one particular concept. However, this
information is usually taken from the ontology used by the annotation
system, and as a result it is very schematic and constrained by the on-
tology itself.

As an example, think about a user who is browsing a Web page con-
taining a review about one of the Harry Potter books. The user might be
interested in knowing something more about these books, so why should
she annotate “Harry Potter” as being a book? No ontology is currently
able to provide the same quantity of information that can be found on
the Web about this topic, and probably if one was built to do so it would
not be able to keep the pace of the ever growing Web. However, it is still
possible to link this concept, once we know it is a book, to a huge num-
ber of services, data sources and search engines which will provide huge
quantities of related information: as an example, Figure 6.8 shows re-
sults from some book-related services, ranging from textual descriptions
to RDF data, from user ratings to the complete books in PDF format.

The purpose of our project is to build an annotation system able to

132

6.2 Exploiting User Gratification for Collaborative Semantic Annotation

provide this kind of experience to the user: the additional context-related
information should be accessible through a template page like the Geo-
Hack page 12 in Wikipedia, and could provide links to specific services,
search engines and query strings13. As a result, we will be able to use
user communities and Semantic Web technologies in a virtuous cycle: on
the one hand we will exploit user spontaneous collaboration to increase
the amount of semantic metadata available; on the other hand, we will
use these new data to make the system more rewarding, thus encouraging
user participation.

Users

The main goal is to make users spontaneously contribute to the system
with semantic annotations. This translates in two main requirements:
motivate users and make their contributions useful by allowing them to
be visible and reusable in the “Web of data”.

One way to increase motivation in users is by giving them some kind
of reward for their participation [111, 27]. This is the reason why our
system is designed to provide it in a double way:

• an instant gratification, by automatically linking the annotated
data with additional sources of information,

• and a long term one, by sharing annotations in a standard and
structured way so they can be searched, accessed and linked with
other data.

Keeping the average Internet user in mind, we also have to face the
problem of identifying what kind of related information might be con-
sidered interesting enough for a particular community of practice [156]:
for instance, an adult does not have the same needs as a teenager, and
people from different parts of the world might want to access different
local services instead of more general ones which are available worldwide.
For this reason, these links should be collected in pages which are very
easy to create, edit and share such as inside a wiki system: anyone has
a page by default for a particular concept, but he can customize it or
directly choose another one.

Finally, the system has to be easy to use and intuitive: users do not
have to know specific details about semantics, but they just have to
12Visible, for instance, clicking on the geo coordinates at http://it.wikipedia.org/

wiki/Milano .
13Like the “search webbits” at http://www.searchlores.org/rabbits.htm .

133

6 Linking Open Data

choose a concept from a list of suggested ones. Also, the only part of the
system they have to use is a browser extension, which adds a new option
to the contextual menu that appears when the right mouse button is
clicked (following the affordance of this button).

Data

Making semantic metadata reusable by other applications basically means
publishing them in RDF and making them available through a SPARQL
endpoint. A particular attention has been devoted to using common on-
tologies for interoperability with other systems, and providing a mapping
system to automatically translate internal terms with terms from well
known RDF vocabularies.

Whenever a term is tagged as being instance of a particular concept,
additional information can be automatically harvested from the Internet
to make the model richer, and some automatic annotations (such as the
ISBN for a book, such as in [66], or an IMDB id) could be added to the
knowledge base.

6.2.3 Project architecture and implementation

The architecture of our system is shown in Figure 6.9: its main mod-
ules are the client extension, the knowledge management tool and the
annotation server.

The client

The client application is nothing more than a normal browser with a
plugin. The user just has to select some text and click the right mouse
button, choosing the contextual menu option “Speakin’ about”: a popup
window then appears, allowing her to choose the name of the concept
related to the selected string.

Actually, as soon as the menu option is chosen the browser extension
communicates with the knowledge management tool (KMT), sending
the selected string and asking for possible concept suggestions. The
KMT replies with its suggestions (see next paragraph for details) and
when the user chooses one it collects all the information needed for the
annotation. Once the annotation is saved, the selected text becomes a
link to a special page which contains a collection of concept-related links
that can be followed to find new pieces of related information.

134

6.2 Exploiting User Gratification for Collaborative Semantic Annotation

Figure 6.9: The system architecture.

The Knowledge Management Tool

The KMT manages the communication with the annotation server, sav-
ing the metadata when it receives them from the user. Also, it provides
additional functionalities thanks to its three submodules: the user base,
the concept modules and the template engine;

• User Base: As everyone can write any kind of annotation, at least
an authentication mechanism is needed to bind annotations with
users. This way, users can either see everyone else’s annotations on
one page or override them with their own ones. Additional features
which might be useful are a social network to connect users and a
trust system to allow users to allow (or deny) by default someone
else’s annotations.

• Concept Modules: As users submit their strings, they should be
shown some concept suggestions: the concept modules take care of
this, searching for the string inside ontologies, Web sites, and online
services to find a matching concept to suggest. The structure is
modular as many different approaches can be taken: for instance,

135

6 Linking Open Data

Figure 6.10: A usage example of the tool, from the context menu to the
search page.

136

6.2 Exploiting User Gratification for Collaborative Semantic Annotation

a module we developed in our prototype searches for matching
concepts or instances inside some domain ontologies; another one
searches inside Freebase; another one could use Wikipedia, or a
search engine for ontologies like Swoogle. As any module might
suggest concepts with different names, this component also comes
with a mapping service which allows to map these names with some
fixed concepts inside one main vocabulary (which, basically, is the
ontology of the concepts for which a special page already exists).

• Template Engine: Special pages with related links exist as tem-
plates, that is pages that receive the selected string as a parameter
and use it to build all their links (as an example, check the wiki
code of the GeoHack page described above). The template engine
is the system which allows to manage templates and matches them
with concepts. It could be very simple (a database which contains
the matches, plus some HTML files) or more complex: in our case,
we chose to manage the templates with a wiki-like system, allowing
users to easily create, edit and share them. In this way, the pos-
sibilities offered by the application are not constrained by anyone
and can grow thanks to user contributions.

The annotation server

The information contained in an annotation made with our tool basically
connects (at least) the annotated URL, the string that epresents the
name of the concept instance, the matching concept and the name of the
user who has saved the annotation. The annotation server is in charge
of storing this information and making it available in a standard format.

Designing our system we decided to consider the annotation server as
a separate module: the reason was that we wanted to build our system
on already available and consolidated technologies, rather than program-
ming everything from scratch. For instance, Figure 6.11 shows how we
could save our metadata in an Annotea server, following its ontology
specification [75].

Implementation

Currently we have a very simple prototype, developed as follows: the
browser extension is a Firefox extension programmed in Javascript; the
KMT has been written in Java and runs as a servlet on a Tomcat server;
the annotation server is a light application written in Java, which saves
its information inside a SQL database end exports it in RDF; thanks

137

6 Linking Open Data

Annotea property Value in Speakin’ about

rdf:type Annotation (as defined in Annotea)
annotates The URI of the annotated resource
context XPointer of the annotated piece of text
body Could be left empty, or used to

correct/disambiguate annotated text
dc:creator Username of annotation creator
created Date of creation
dc:date Date of last update
related URI of the related concept

Figure 6.11: Matching between Annotea properties and annotation val-
ues used by Speakin’ about.

to Joseki, it can then be queried as a SPARQL endpoint; the browser
extension communicates with the KMT via HTTP, and the KMT com-
municates with the annotation server via RMI.

6.2.4 System evaluation

The tool has been designed with ease of use in mind: for this reason,
the whole process of semantic annotation reduces to just few steps. At
the first step (see Step 1 on Figure 6.10), the user selects some text from
the current Web page, clicks the right mouse button and chooses the
“Speakin’ about” option. Then (Step 2) she is shown the chosen string,
the originating page and a list of suggested concepts. When the user
chooses one of the concepts and submits the information, the annotation
is done and the Web page is updated with a new link on the annotated
text. If the user clicks on that link, she is shown the search page (Step
3), containing the list of search engines related to the particular concept
chosen by the user. Of course, once the user understands how wiki
templating works se can change existing search pages or create new ones,
allowing the concept selection tool to provide more choices (Step 4).

As the system is inherently dependent on user participation and, at
the same time, it aims at linking information from different sources,
it opens to two different evaluation approaches: on the one hand an
evaluation of usability and user satisfaction, and on the other hand a
test on the exported data and how well it integrates with heterogeneous
sources. Being still in the prototypal phase it was not possible to test
the system with a realistic user base, however we were able to perform

138

6.2 Exploiting User Gratification for Collaborative Semantic Annotation

Class Gnosis Speakin’ about

City 6 5
Company 2 2
Continent 1 1
Country 18 17

Industry Term 3 0
Organization 6 4

Person 15 10
Product 1 1

Province or State 3 3

Figure 6.12: Comparison between the number of concepts automatically
found inside the main English Wikipedia page by Gnosis
and the ones also recognized by Speakin’ about.

user-independent tests on it. For instance, we verified that the appli-
cation was actually able to provide users with the promised additional
information and links: to do this, we decided to compare our results
with the ones provided by Gnosis. We performed the test on the main
English Wikipedia page, checking how many concepts were automati-
cally detected by Gnosis. Then we passed the matching strings to our
Knowledge Management Tool to see if it was able to suggest the same
concepts. For this task we used the Freebase module, which relies on the
vast amount of knowledge harvested from Wikipedia and enriched by its
user community.

The results are summarized inside Figure 6.12: Speakin’ about is able
to recognize almost all of the concepts detected by Gnosis, however it is
much more sensible to typos (which is the reason why it could not detect
one City and some names); moreover, it is not able to recognize industry
terms like “bank” or “environmental law” as they are not named entities
and they do not appear in Freebase. Conversely, Speakin’ about offers
a larger taxonomy, which is the one provided by Freebase: in the same
page, it was able to detect football teams, book titles, actors, and so
on. Also, similar concepts are suggested based on partial matches of the
selected strings; more concepts are provided at the same time, so that
there are more chances for users to disambiguate the term; finally, the
related search engines provided by Speakin’ about are usually much more
than the ones provided by Gnosis, and their number can grow thanks to
user contributions.

139

6 Linking Open Data

For what concerns data evaluation, we have put our effort in following
Linked Data recommendations, with the purpose of making our meta-
data public and easily available to other applications. Our prototype
system is already able to export its information in RDF and provides
a SPARQL endpoint to allow queries over the knowledge base. It is
thus possible to ask for all the pages which “speak about” some concept
(or some instance), and link this information with other data to answer
more complex queries: for instance, importing an ontology about cin-
ema, a user can ask for all the pages that speak about movies in which
a particular actor has starred.

Other collateral advantages spawn from annotating information with
Speakin’ about: first of all, the system allows not only to add seman-
tic metadata about URIs (that is, saying that a page is about some
particular concept), but also to map strings with specific concepts, dis-
ambiguating them and offering access to a wealth of concept-specific ser-
vices (see an example of disambiguation in Figure 6.13, where “Verdi”,
which in Italy is a color, a composer and a political party, is identified
as a composer). In particular, users instantly have access to new pieces
of linked information, which grow thanks to collaboratively edited tem-
plates, harnessing the power of available services and specialized search
engines. Some template pages (ie. books and movies), containing links
to specific services and search strings, are already available as a proof
of concept, and thanks to a wiki system users can easily edit them and
create new ones.

6.2.5 Conclusions

In this section we described a collaborative semi-automatic annotation
approach for Web pages, which allows users to connect pieces of un-
structured text with related concepts. As an immediate result of these
annotations, users are provided with related information about anno-
tated concepts, in the form of pages containing links to concept-specific
services and search string. These pages are built up from templates
which can be created, modified and shared by the community inside a
wiki-like system.

The novelty in our approach is represented by the following aspects:
first of all, the additional information about annotated concepts is not
provided by the system itself but it is harvested from the Internet, tak-
ing advantage of all the systems which freely share their data; then, all
the saved metadata are made public and easily available to other ap-
plications, as they are saved in RDF and exposed through a SPARQL

140

6.2 Exploiting User Gratification for Collaborative Semantic Annotation

Figure 6.13: Our prototype in action: thanks to the ontology plugin,
the ambiguous string Verdi is disambiguated thanks to its
association with the composer concept.

141

6 Linking Open Data

endpoint; finally, the whole system relies on user participation and uses
the new linked information as a reward for the users.

Our application is currently in a prototypal form. As a future work,
we plan to build a system complete in all its modules (in particular, the
user management and the connection with an Annotea server) and make
it available on the Internet: this will allow us to complete our evaluation
with a real user base, in terms of participation and user feedbacks.

6.3 Using semantics and user participation to

customize personalization

Personalization, under a general interpretation, means tailoring a prod-
uct or a medium to a user, according to some personal details they
provide. More specifically, on the Web it is the process of providing rel-
evant content based on individual user preferences. These preferences
can be provided to the system either implicitly or explicitly. Examples
of explicit data collection include user ratings (i.e. stars on YouTube or
diggs on Digg), rankings, or wish lists (such as Amazon’s wish list14).
Examples of implicit data collection include observing which Web pages
are viewed by users and the time they spend on them, keeping a record
of the items that a user purchases online, reading playlists of multimedia
contents, and analyzing users’ social networks.

Once user preferences have been collected into what, from now on, we
will call a user profile, personalization engines can access them to provide
a tailored Web experience with personalized contents or interfaces. Of
course, there always needs to be someone who provides material which
can be tailored on each person’s profile.

Customization takes place when users directly affect the behavior of
the engine which provides the contents, by specifying (usually explicitly)
different parameters inside a configuration. A schema of how both per-
sonalization and customization work is shown in Figure 6.14. Looking at
the figure, it appears quite evident how much the two are similar, and it
also explains why they are often confused with each other: basically, for
the tailoring engine (which takes care of personalization, customization,
or both) the profile and the configuration are nothing but input param-
eters that tell how it has to operate; once it reads them, it can tailor
contents to the user’s desire. However, from the user perspective person-
alization and customization work in very different ways: in the former

14http://www.amazon.com .

142

6.3 Using semantics and user participation to customize personalization

Figure 6.14: Personalization and Customization.

case, the only knowledge users have to provide is about themselves (i.e.
who they are, what they like, and so on); in the latter, as users have to
provide information about how the engine has to operate they need to
know something about the system itself.

The fact that customization is so dependent on the knowledge of the
system makes it much more complex for beginners: this is the reason
why many applications often have some settings enabled by default, so
that unexperienced users will basically have to know nothing about the
program to be able to run it. However, the more users get experienced
the more they appreciate the possibility of customizing the behavior of
their applications so that it better reflects their preferences. The result
is that customization allows users to know what to expect from the
programs they have configured: as an example, a media player can be
configured not only to play the songs a user likes, but it can also play
them following a particular order which is specified inside a playlist.

Even from this example it might seem that customization is preferrable
to personalization, as it allows users to have full control of their systems,
this is also useful to understand why sometimes personalization could be
much better than customization. After all, who does not ever get bored of
always listening to the very same sequence of songs? Systems like Last.fm
or Pandora15 have a great success lately as they provide personalization

15http://www.pandora.com .

143

6 Linking Open Data

on radio streams: users can choose the bands or the genres they like
most and, thanks to a system that learns their preferences, they listen
not only to the songs they already know, but also to other unknown
ones that they might like given their profile. In an interconnected world
where the songs we know will always be much less than the ones we
do not (and, by analogy, where all the Web pages we can read will be
just a tiny part of the ones that are published), personalization has the
advantage of providing us with new, interesting information which suits
our taste.

A huge limit of personalization, however, is that it highly relies on
the user profile: on the one hand this affects the system precision, as
profiles often have to be built from scratch and it takes time for the
system to learn users’ preferences; on the other hand, giving away their
personal information is often a problem for users, who want to protect
their privacy and security as much as they can.

Summarizing, both customization and personalization have their pros
and cons:

• customization allows to have a finer grained control on the system,
allowing users to know what to expect; however, already knowing
what to expect is sometimes boring and users might need to know
too many technical details, which could make actual customization
unfeasible for beginners. Also, as configurations usually show only
the details of the system which are exposed to users, they might
give them the false feeling of having control on something they can
only see in part.

• personalization is less predictable and shows potentially new and
interesting information, requiring virtually no technical knowledge
on the user’s side. However, it takes time to train and it works on
a model of the user preferences (the profile) which can be wrong,
limited, or incomplete. Also, the way the profile is used to gener-
ate the final results, and often the profile itself, are usually hidden
to users, so they can only take advantage of what they are given,
hoping it is going to provide something useful for them. The im-
possibility of choosing how their own profiles are used, together
with concerns about their privacy, often make users choose for the
easiest choice, that is eliminate personalization16.

16A very interesting real-world example of “customization to disable per-
sonalization” is shown at http://googlesystem.blogspot.com/2007/04/

how-to-disable-google-personalized.html .

144

6.3 Using semantics and user participation to customize personalization

Starting from these assumptions, we decided to give users the chance
of customizing personalization, allowing them to access their own profiles
with different layers of abstraction and providing them with an easy way
to develop, share, and run applications which use their profiles to do
something useful. Even if the number of users which are also program-
mers is small, both literature [90] and real-world examples (see Section
6.3.1) show that it is possible to exploit the different levels of user en-
gagement to have different qualities of participation.

For our experiments we chose a very specific context: user history and
bookmarks within the Firefox browser. We then developed an ontology
to describe this knowledge and a set of tools that provide the following
functionalities:

• offline conversion of Firefox 3.0 history and bookmarks to RDF;

• a framework for the development of personalization plugins, in the
form of a Firefox extension which updates the ontology in realtime
(i.e. while the user is browsing the Web) and uses information
taken from it to customize the Web experience.

Finally, we developed some example personalization plugin which al-
low for information visualization, augmented browsing, and website cus-
tomization.

The report is organized as follows: in Section 6.3.1 we describe the
technologies and the software we used and the related work; in Section
6.3.2 we describe our approach and motivate our choices; in Section 6.3.3
we describe the architecture of our project and show the most important
details of our software; in Section 6.3.6 we evaluate the project and in
Section 6.3.7 we conclude and suggest future developments.

6.3.1 Prior work

Semantics and personalization have already been studied from different
point of views. As an example, [1] provides some papers collected for
the Semantic Web Personalization Workshop that took place at the 3rd
European Semantic Web Conference in Budva, Montenegro.

Semantics can be used to provide better recommendations. [42] uses
an ontology do describe a domain and maps keywords extracted from
Web pages to concepts inside the ontology. The ontology terms are used
to annotate the Web content and users’ navigational patterns, and at
the same time to do word sense disambiguation. The personalization

145

6 Linking Open Data

framework built onto this ontology is then used to enhance the recom-
mendation process with content semantics.

[146, 64] use ontologies as a base to calculate similarity between items
on a website (respectively, Web pages or documents in a bibliographic
peer-to-peer system). In the first case, a domain ontology is used and
the similarity depends on the relations that connect concepts inside the
ontology. In the second, the SWRC (Semantic Web for Research Com-
munities) ontology17 and the ACM topic hierarchy18 are used as a base
for different similarity functions.

Semantics can be used to improve search by filtering search results.
[108] shows how information gathered from social bookmarking services
can be used to provide better search results. A similarity metric has
been suggested that uses the tags to describe the web results, and has
been used to rerank search results.

Semantics can be used to describe and make the user profile portable.
[23] uses Semantic Web technologies and the two ontologies SIOC19 and
FOAF20 to model user information and user-generated contents in a
manchine-readable way. The advantage is the possibility of reusing user
data and having her network information saved in a standard and well
known format.

Semantics can be used to personalize the tool. [6] describes the use of
FOAF and a modification to the HTTP protocol to create personalized
Web pages on the server side. The same authors in [7] show a similar
approach, however suggesting the very interesting alternative of using
personal information for personalization on the client side. [76] also
shows how Web history can be used to customize the user interface on
the client side, filtering or re-ranking the Web applications suggested
by many social websites depending on which ones have been accessed
more in the past. Finally, all the recent browsers (Firefox 3, Google
Chrome, and Flock) provide some way to show users their most accessed
pages: Firefox shows them as “Smart Bookmarks” in the bookmark bar,
while both Chrome and Flock provide a personalized start page with the
favorite pages. Flock currently even goes a step further, with a start
page which has content gathered from different social Web applications
and the possibility for the user to customize it.

17http://ontoware.org/projects/swrc .
18http://www.acm.org/class/1988 .
19http://sioc-project.org .
20http://www.foaf-project.org .

146

6.3 Using semantics and user participation to customize personalization

Client-side Customization

The idea of customizing Web pages on the client is not new, but began
to have a wide success only lately. The concept at the base is pretty
simple: all the information entering a machine can be customized by the
machine itself before they are shown to users: this allows them to have
control over what they see, rather than using the computer as a TV[47].

Some of the fist programs which allowed users to do client-side cus-
tomization on Web contents were Scott R. Lemmon’s Proxomitron21 and
Philtron22. They worked as local proxy servers and were able to fil-
ter incoming HTML pages before they were loaded by the browser for
rendering; most of the customization was done exclusively on the page
contents.

While client-side customization tools did not seem very useful at their
origins (and surely their complexity was much higher than the actual
advantage of using them, at least for the large majority of users), they
are now much more useful as they can customize not only page contents,
but also user interfaces. This is partly due to the fact the Web is currently
used not only as a repository of information, but also as a provider of
online applications, which share with Web pages the same client-side
modifiable representation. Moreover, latest browsers like Firefox are
built to be customized: with its extensions, which are basically Javascript
applications that are embedded into the browser and can access its APIs,
it is possibile both to operate on the interface (i.e. adding functionalities)
and on the page contents (i.e. filtering advertisements).

An example of Firefox extension, which acted as an inspiration to this
project, is Greasemonkey23. It provides a set of functions, which allows
to easily customize the content of Web pages, and a script manager,
which allows users to write and share their scripts easily. As a proof
of the interest of users towards this kind of products, this extension
is one of the most popular ones on the Firefox Add-ons website with
about 9.5 million downloads, and provides more than 20,000 scripts on
its community website24.

21http://www.proxomitron.info .
22http://philtron.sourceforge.net .
23http://www.greasespot.net .
24Data gathered from https://addons.mozilla.org/it/firefox/addon/748 and

http://userscripts.org/scripts on September, 10th 2008.

147

6 Linking Open Data

6.3.2 Our Approach

Our project is based on the assumption that personalization could pro-
vide much more useful results and be better accepted by users if they
could have access to their own profiles. As a specific example, we decided
to develop a tool which works on the browser history and bookmarks to
provide personalized experiences to users.

There are different reasons why we chose this particular application.
First of all, as both computer applications and multimedia entertainment
are becoming more and more web-driven, there are going to be more and
more chances to have a quite detailed personal profile just by browsing
our history (that is, what websites we have visited) and our bookmarks
(that is, what websites we want to remember). Then, as the quantity
of information available on the Web increases, the classic hierarchical
bookmarking paradigm is going to become old and very difficult to man-
age (supposing it is not already). Social bookmarking (i.e. del.icio.us),
Web search (i.e. Google’s search history), and starred items (such as in
Firefox 3) are some possible solutions to this problem, but we believe
that allowing users to easily access their own history could provide a
bigger advantage to them. Finally, browser bookmarks and history are
already available on every computer and, even if there are some tools
which actually use them25, they are not shared with a standard format.

The immediate advantage of our approach is that personal information
such as history and bookmarks are available to the user in a standard
and simple format; moreover, data is updated in realtime and can be
accessed in any moment by any application, either internal or external to
the browser. This makes a big difference, as Firefox 3 locks its database
while it is running and the only chance to access it is from within the
browser (i.e. programming an extension) or working offline when it is
closed.

The Data Model

To build our ontology, we decided to study the schema of an existing
history profile: we chose Firefox 3 places.sqlite, a SQLite 3 database
file which contains both history visits and bookmarks. The file is usually
saved together with Firefox user profile information: for instance, under
Windows Vista it can be found in

<user home>\AppData\Roaming\Mozilla\Firefox\Profiles\<profile>\places.sqllite

25See, for instance, the default start page in Google Chrome, which shows users their
most visited websites.

148

6.3 Using semantics and user participation to customize personalization

Figure 6.15: The schema for Firefox 3 places.sqlite file.

Under Linux, instead, it is available in

~/.mozilla/firefox/<profile>/places.sqllite

The database schema is shown in Figure 6.15. The tables we are
currently gathering data from are:

• moz_places, which provides information about URLs. For in-
stance, together with an id and the actual URL, it also has a field
containing the page title, one with the number of time it has been
visited, and one linking to the favorite icon;

• moz_historyvisits, which contains the history. It links to places
from moz_places and provides information about the referrer, the
visit date, the type of visit (i.e. a direct connection, a page redi-
rection, etc.), and the browsing session;

• moz_bookmarks, which contains the bookmarks collection. For ev-
ery bookmark different information are provided, such as the type
(bookmark, folder, or separator), the name, the parent folder, and
the dates of creation and modification.

149

6 Linking Open Data

Figure 6.16: Data model for visits.

Figure 6.17: Data model for bookmarks.

150

6.3 Using semantics and user participation to customize personalization

PREFIX HPLBrowseData: <http://hpl.hp.com/schemas/FFontology#>

PREFIX mozh: <http://hpl.hp.com/schemas/history#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

mozh:826 rdfs:type HPLBrowseData:Visit ;

HPLBrowseData:Session "45524179520808800"

HPLBrowseData:Referrer mozh:0

HPLBrowseData:URL <http://delicious.com/>

HPLBrowseData:Name "Delicious"

HPLBrowseData:Date "2008-08-11T23:04:11Z"^^xsd:dateTime

HPLBrowseData:DeliTopTag "delicious"

HPLBrowseData:DeliPosts 741

Figure 6.18: A history item in RDF, with related del.icio.us information
attached to it.

The ontology we built has a simpler structure, taking into account
only two main classes:

• Visit (see Figure 6.16) describes browser history and its properties
are URL, Date, Name, Session, and Duration. Currently only URL
points to a resource, while all the other properties point to literals
(datatypes are xsd:DateTime for Date, xsd:String for Name and
Session, and xsd:Integer for Duration). The last property describes
the quantity of time that a user spent on a specific page and is not
provided by Firefox history;

• Bookmark (see Figure 6.17) describes bookmarks and its prop-
erties are URL, Date, BookmarkName, BookmarkType, and Book-
markFolder. URL and the last two properties point to resources,
while Date and BookmarkName point to literals whose datatypes
are, respectively, xsd:dateTime and xsd:String.

One of the main advantages of having these data saved in RDF format
is that the knowledge base can be expanded very easily, just by asserting
new triples about the existing resources. For instance, the one shown in
Figure 6.18 is an RDF description of an element from the history: the last
two lines represent the top tag used for that particular URL on del.icio.us
and the total number of posts at that particular time. These two pieces
of information have been added by another application (explained more
in detail in Section 6.3.4) and are used together with the main data for
visualization purposes.

151

6 Linking Open Data

Figure 6.19: Three possible architectures to access the RDF store.

6.3.3 Framework Architecture and Implementation

A very modular architecture has been decided for the project, allowing
users to access the profile with different levels of abstraction and com-
plexity (see Figure 6.19). Basically, user browsing profile (history and
bookmarks) is saved in RDF inside an HSQLDB database; SDB provides
the layer of abstraction that allows us to have a database-backed RDF
store and offers access to data in (at least) the three following ways:

1. a generic Java application can directly access the RDF store using
Jena and the SDB library;

2. Joseki can be configured to access the RDF store using SDB, then
any external application can manipulate the store via HTTP re-
quests, using the SPARQL endpoint;

3. information could be exposed through a (Java+Jena+SDB) API,
then any external application can manipulate the store exchanging
JSON data over HTTP.

Note that the second and the third approach, using Java applications
that use Jena and SDB, are particular cases of the first one. However,
each one provides a different interface to the profile and has its pros and
cons:

• the first solution gives full control over the ontology through the
Jena API and provides the best performances. However, it is so
low-level that it also leaves programmers the burden of dealing with
database connection details (i.e. the authentication parameters)

152

6.3 Using semantics and user participation to customize personalization

and requires an in-depth knowledge about the ontology structure,
RDF, and SPARQL. Moreover, it constrains programmers to use
Java, Jena, and SDB.

• Joseki, allowing programmers to work at a higher level of abstrac-
tion, removes the constraints on programming language and does
not require users to know any detail about the database connec-
tion: basically, any application able to send SPARQL requests over
HTTP can thus access the ontology. The advantages of this solu-
tion are clear: it relies on well known standards, it is very fast to
deploy, and it works out of the box with other applications that
already support the used protocols. However, it still requires pro-
grammers to know SPARQL and the structure of the underlying
ontology.

• the API solution uses JSON, which is another well known standard
and is already used in many large-scale projects (such as in Free-
base or del.icio.us APIs). Its main limit is that it offers less control
over the ontology, but its main advantage is that it does not even
require programmers to know that an ontology exists one under-
neath the interface. Applications can be built with any program-
ming language and do not require any knowledge about SPARQL.

Developed tool: Places2RDF

is an example of type 1 application: it is a command-line tool that loads
the places.sqlite file from a Firefox profile and converts it to RDF.
Output is shown as text or can be directly saved inside an RDF store
using SDB. We have bundled Places2RDF with a local, self contained,
platform independent SPARQL endpoint built with the previously de-
scribed technologies (Joseki, Jena, SDB, and HSQLDB), so that infor-
mation could be immediately available to SPARQL-enabled applications.

The program has been built to be flexible enough to support different
databases and ontologies. All the details about the data structure are
saved inside a configuration file, which is built as an ontology: a sketch
of its structure is shown in Figure 6.20.

The application relies, in a way which is very similar to the Squirrel-
RDF program (more details in [50]), on the concept of mapping between
fields inside a table and properties. In the configuration file users can
specify:

• the path of the database file;

153

6 Linking Open Data

Figure 6.20: Data model for Places2RDF configuration file.

• the output format for the ontology (i.e. "N3");

• a list of regular expressions for urls that have to be filtered away
(for instance, secure http connections or selected domains);

• a list of queries : every query contains the actual SQL query, the
default subject for the triples that will be created, and a list of
mappings. Every mapping matches a field with a particular prop-
erty in the output ontology, specifies the format of the data and
allows to specify a default prefix that is currently used to convert
table values to custom IDs.

The final results are similar to the ones shown in Figure 6.18. One
of the main advantages of this tool is that it does not depend on the
particular Firefox data file, so it could be adapted to become a general
conversion tool for different formats (just to name one, Google Chrome’s
history and bookmarks file) and different ontologies.

154

6.3 Using semantics and user participation to customize personalization

Developed tool: RDFMonkey Customization Extension

is an example of type 2 application. It is a Firefox extension that ac-
complishes the following tasks: first of all, it checks in realtime which
websites the user is browsing or saving as bookmarks and gathers related
data; then, it passes this information to its plugins, which can use it for
different purposes.

The default action is to save data as RDF inside the ontology: this
is done sending SPARQL UPDATE queries to the Joseki server. An
example of such a query is the following, which updates the ontology
stating that a bookmark has just been saved:

PREFIX HPLBrowseData: <http://hpl.hp.com/schemas/FFontology#>

PREFIX mozb: <http://hpl.hp.com/schemas/bookmarks#>

PREFIX mozh: <http://hpl.hp.com/schemas/history#>

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>

INSERT {

"{23592b76-e4ea-4d93-81e3-bea0d2ed9cd1}0" a HPLBrowseData:Bookmark;

HPLBrowseData:URL <http://www.google.com>;

HPLBrowseData:BookmarkName "Google";

HPLBrowseData:BookmarkType <HPLBrowseData:BookmarkClass>;

HPLBrowseData:Folder "{a6358e91-aa9d-4c36-8626-8a4bc61ebaa1}1";

HPLBrowseData:Date "2008-09-17T17:36:54Z"^^xsd:dateTime;

}

To test what the advantages of having user’s browsing information
exposed and accessible, we developed two plugins that exploit the data
saved by RDFMonkey: the former takes advantage of the open and ex-
tensible nature of RDF to enrich it with information taken from del.icio.us
and provides a visualization of user’s browsing history; the latter aug-
ments Web browsing, using Freebase to find information related to the
current page and providing links to other potentially interesting related
data sources.

6.3.4 Example plugin: del.icio.us and Google’s MotionChart

Our first plugin takes advantage of the open structure of RDF to merge
history information with data downloaded on the fly from del.icio.us.
Its architecture is shown in Figure 6.21. For every visited page (a),
it accesses del.icio.us API26 and (b) gathers information about it: if
the URL has been saved in the social bookmarking website, then its
popularity (i.e. how many people have saved it) and its most popular tag

26More info available at http://delicious.com/help/api .

155

6 Linking Open Data

Figure 6.21: Architecture of the RDFMonkey visualization plugin.

are retrieved. This information is then saved together with the history
item inside the RDF store. In this way, the downloaded data is bound to
the particular date the visit took place: it is thus possible to keep track
of the evolution of this information during time.

To visualize (c) the information we saved, we use Google’s Motion-
Chart27. This tool allows to manage different kind of information at the
same time by drawing bubbles on a plane: data can affect their position,
their size, their color, and can also change in time.

MotionChart access information saved in a particular format, that
is the same one used by Google Spreadsheet to save its data. To make
our history (augmented with del.icio.us information) available to Motion-
Chart, we set up a service that accesses the RDF store and automatically
converts the available information in the desired format. The conversion
is made easy thanks to the fact that RDF properties also describe their
own datatypes, so it is possible to set the right format for the different
fields automatically.

The final result inside MotionChart is shown in Figure 6.22 and 6.23.
Every bubble is a visited URL and its color matches the color of the most
common tag that has been used for it. A list of all the tags appears on
the right and whenever the mouse pointer hovers on either a URL or a
tag, their matching elements blink. For each axis it is possible to choose
one of the following data sets: del.icio.us popularity, del.icio.us number
of posts per date, and total number of visits by the user. The same data
can be used to change the bubbles’ size. A scroll bar below the graph
27See http://www.gapminder.org/graphs.html .

156

6.3 Using semantics and user participation to customize personalization

Figure 6.22: History visualization through Google’s MotionChart.

allows to change the data across the timespan in which information has
been gathered. A “play” button allows to automatically see the evolution
of someone’s history.

Having a chance to see all this information at a glance allows users
to give many different interpretations to what they have visited in a
period of time, depending on what’s more interesting for them. For
instance, Figure 6.22 shows the static information for a particular day,
with number of visits on the x axis and del.icio.us popularity on the
y axis: from this, a user might know wheter she has visited more or
less websites than in the other days; she could easily understand which
websites she has visited most (as they appear on the right) and if they
are also popular (as they appear on the top) or not; watching at the
evolution of her history in time, she could see whether the main topics
she is interested in are changing or not, and whether she is a trend
follower or not.

In Figure 6.23, instead, the x axis still matches the total number of
visits at a particular day but on the y axis del.icio.us posts per day are
mapped, while the size of the bubbles increases with del.icio.us popu-
larity. From this view a user could see if trends change independently
from the actual popularity of a website: in Figure 6.23, for instance,

157

6 Linking Open Data

Figure 6.23: Delicious.com versus del.icio.us on MotionChart.

it is possible to see how delicious.com, the new URL for del.icio.us, is
becoming more trendy than the old address, despite the fact that its
overall popularity (i.e. the number of people who actually saved it) is
still smaller.

6.3.5 Example plugin: Freebase

Our second plugin tries to enhance users’ browsing experience by adding
some links and information which are related to a webpage while the user
is accessing it. The starting point for this small project is the following:
a lot of topics in Freebase contain links that point to external websites
which could provide additional information for the topics themselves. For
instance, the topic about the band “Metallica” has links that point out
to Wikipedia, Musicmoz, the New York Times “Times Topics” devoted
to the band, and, of course, their official homepage.

Thus, whenever users visit one of these particular webpages, it is pos-
sible to follow the links backwards and see what topic contains them.
From the topic, then, it is possible to get the matching Freebase types
and some of their properties. Finally, it is possible to use these values to
run other Web services that provide related information, in a way which
is very similar to the one described in [49]. The architecture for this

158

6.3 Using semantics and user participation to customize personalization

Figure 6.24: Architecture of the RDFMonkey sidebar plugin.

plugin is shown in Figure 6.24.
The tool shows the additional information inside a sidebar in the Fire-

fox browser. The way information is presented depends on XUL28 tem-
plates, which are stored in JSON format and can be easily modified by
users themselves: thus, anyone can choose what kind of related informa-
tion is shown by the browser and how it is presented to the user. As
an example, the following code provides the information to show when
a page related to a “/music/artist” is shown:

"/music/artist" : [

{

"href" : "http://www.last.fm/music/{{{NAME}}}",

"image" : "chrome://rdfmonkey/skin/lastfm.png",

"text" : "Listen to this artist on Last.fm",

"xul" : "link",

"NAME" : "eval(obj.source.name)"

}

]

The previous code is used to load a XUL template containing an im-
age, a link to Last.fm and a simple text. Thus, whenever a musical artist
page is found, users are automatically shown a link that points to that
artist’s radio on Last.fm. This is just a very simple example, which takes
information already available (the name of the Freebase topic which is
linking to the current page) and just links to another website. How-
ever, with more advanced templates and additional queries on freebase
28XML User Interface Language. It is a language made by Mozilla to allow program-

mers build rich cross-platform applications which are very easy to customize.

159

6 Linking Open Data

it is possible to create something more useful and appealing for users:
for instance, Figure 6.25 shows (a) how it is possible to directly embed
the Last.fm radio into the sidebar, (b) a link to Amazon that appears
whenever a book-related page is shown, and (c) a map that appears for
anything that is described as a location, obtained by first querying Free-
base for the object’s coordinates and then passing them to the Google’s
Maps widget which is embedded in the sidebar.

6.3.6 Plugin Evaluation

For our evaluation we mainly focused on the information we could gather
from Freebase. For the tool to be actually useful, we need it to work with
as many pages as possible and, at the same time, to provide information
which could be considered useful by the users.

Our first task was to extract URLs appearing in Freebase as outgoing
links (the ones that from now on we are going to simply call Freebase
URLs, even if they are not Freebase’s): our dataset has been built down-
loading the July 2008 “/common/webpage” data dump (Updated July
9, 2008) and searching for all the HTTP URLs present in the file. The
total number of URLs extracted from Freebase was 310278.

Of course this number is ridiculously small when compared to the size
of the whole Internet, but it has a completely different value when it
is compared to the subset of the webpages that are actually visited by
users. To prove this, we decided to calculate the incidence of Freebase
URLs inside a dataset provided by Nielsen29. These data describe the
anonymized browsing history of hundreds of thousands of users, together
with a classification of the visited websites and some additional informa-
tion about user census. For our work we chose to use only a subset of
this dataset, related to the month of January 2008: this amounts to a
total of more than 200 million page hits, done by a set of more than
61000 users.

We ordered the set of visited URLs depending on how many times they
had been accessed by users. We then kept the top million URLs, with the
first one having 2.6 million hits and the last one only six. Inside that set,
the total incidence of Freebase URLs is 0.77%: this means that out of the
top million web pages only 7722 were also appearing in Freebase. This
value, however, becomes much higher if we weight the URLs by the times
they have been actually visited: out of about 59 millions visits, about 5.7
millions were directed to web pages that also appear in Freebase, with

29http://www.nielsen.com .

160

6.3 Using semantics and user participation to customize personalization

(a)

(b) (c)

Figure 6.25: Related content provided by the RDFMonkey Sidebar plu-
gin.

161

6 Linking Open Data

an incidence of 9.75%.

Given how much the number of visits can influence the final results, we
also checked how the average incidence changed moving from the most
popular URLs to the less visited ones. Thus, we divided the dataset in
chunks of 1000 URLs each and we calculate incidence (both on sites and
on visits) for each one of them. Then we plotted the resulting values both
for each single chunk and as a global average that changes in time. The
first plot is shown in Figure 6.26(a), where the top 100 chunks appear
with their respective incidences: only the very first ones have significative
values, then they stabilize around a very low threshold. After the first
few chunks, the values for sites and visits also appear to be very similar
as the weights tend to be distributed in a much more homogeneous way
(i.e. the difference between the first URL and the 1000th is more than
2.6 million hits, the one between the 1000th and the 2000th is only 1800
hits). The second plot is shown in Figure 6.26(b) and shows how the
total incidence changes while more chunks are taken into account. As
expected, it decreases quickly at the very beginning and then almost
stabilizes around the final value.

Checking the top URLs in Nielsen database we noticed that particular
categories of links (such as search engines and online email providers)
were more common than others. As we are interested in just particular
classes of pages (i.e. we are not going to find our personal email messages
linked into Freebase), we decided to take advantage of Nielsen’s website
categorization to run the same kind of statistics for each available class.
The result is shown in Figure 6.27 and presents the incidence of Free-
base URLs in each category, weighted by the number of visits. Out
of the 15 categories, the one named “Search Engines/Portals & Com-
munities” has the highest percentage (more than 23% of the visits are
directed towards websites that are also linked inside Freebase); it is then
followed by “News & Information” with more than 11% and then by
“Finance/Insurance/Investment” with about 7%; all the other categories
have an incidence which is below 5%.

Knowing which classes of URLs have a higher incidence of freebase
URLs help us give an interpretation to the previous results: for in-
stance, despite having high ranked URLs in Nielsen data, the category
“Telecom/Internet Services” does not have a very high incidence, while
News—which could provide more interesting related information—has a
higher value.

Finally, it is worth noting that there are some websites which almost
do not appear in the list of Freebase URLs, but that could be easily

162

6.3 Using semantics and user participation to customize personalization

(a)

(b)

Figure 6.26: Incidence of freebase URLs inside the Top 1 million visited
urls: values for single 1000-URLs chunks (a) and behavior
of the overall value as the set grows bigger (b).

163

6 Linking Open Data

Figure 6.27: Incidence of Freebase URLs inside visits, divided into
Nielsen categories.

linked automatically. These are all those websites that are used as au-
thorities, that is the ones that provide resources with a unique id such as
Wikipedia, IMDB, Netflix and so on. As these IDs are also imported into
Freebase, it is possible to link to a related Freebase topic starting from
any page in these systems. This means that our tool could be particu-
larly useful for specific classes of users, such as Wikipedia contributors
or movie aficionados.

After checking the incidence of URLs, we decided to focus on Free-
base types. The reason is that we are not just interested into having
a particular page linked into Freebase, but also into having interesting
related information about it. Basically we assumed that the more the
types and the properties the topic has, the highest amount of potentially
interesting related information it can provide.

Thus, we first ranked Freebase types according to their usage. Free-
base has more than 4000 types and their distribution is shown in Figure
6.28. In the top 15 types (see Table 6.1) there are of course “common
topics”, that is one of the most generic (and from our point of view unuse-
ful) Freebase types, but also musical tracks, artists and albums, people,
and locations. In the top 100 a lot of other potentially useful types
are present, such as cities, films and actors, books and book authors,
restaurants, companies, and videogames.

Thus, if it is true that there are a lot of topics whose type is “/com-
mon/topic”, it is also true that there are many which share other types.
Moreover, even in the worst case, they can provide some additional in-

164

6.3 Using semantics and user participation to customize personalization

Figure 6.28: Distribution of Freebase types: the most used one (/mu-
sic/track) is associated to 4.1 million topics.

formation through their own links, for instance to Wikipedia: in fact,
out of all the topics which share the common type, only 21810 do not
have links to Wikipedia, while the remaining 1.1 million link at least to
their matching Wikipedia article.

6.3.7 Conclusions

Both personalization and customization are techniques which can bring
value to a system, making the user feel like it is more “personal”. Cur-
rently, however, while more and more systems allow users themselves to
apply their own customizations (such as UI skins, security settings, or
personal preferences), there are still few which allow users to directly
access and use their personal information.

Looking at the huge success many customization tools had, not just on
a particular set of expert users but also on the wide Internet public, we
decided to make personalization customizable, that is to allow users ac-
cess their own personal profile and build custom applications that exploit
it.

To do this, we chose a specific use case: the information that users
leave when they use their browsers, that is the history of the visited
websites and the collection of their bookmarks. We then converted this

165

6 Linking Open Data

Type Topics
/music/track 4110740

/common/topic 3911182
/common/document 2607367

/people/person 775876
/type/content_import 773153

/type/content 747299
/common/image 705154

/media_common/creative_work 511159
/music/release 505623

/location/location 500534
/music/album 464239
/music/artist 365760

/common/webpage 331361
/location/geocode 262923
/business/employer 235032

Table 6.1: The top 15 types in Freebase, ordered by number of topics.

information from the proprietary format used by Firefox 3 in an open,
RDF-based format. We built tools to do the conversion offline or in
realtime and a browser extension that uses these data to provide new,
potentially interesting, information. The whole set of tools is built to be
extensible, so it makes heavy use of configuration files that can be easily
modified by users to provide additional features.

As one of our prototypes aims at enhancing the browsing experience
by providing related information gathered from Freebase, our evalua-
tion focused on Freebase links and types. Using the Nielsen database,
we drew statistics about the incidence of Freebase URLs inside the top
million visited websites and we found promising results: while the per-
centage of top Nielsen links that also appear in Freebase is still pretty
low (0.77%), the percentage of visits that take to a link belonging to
freebase is rather high (9.75%). We repeated the same calculations over
15 different groups of URLs, belonging to the different website cate-
gories provided by Nielsen, and were able to detect how the incidence
is distributed across the groups. Finally, trying to detect among the
Freebase topics which ones were more useful from our point of view, we
ordered Freebase types by usage and analyzed the results: even if the
most generic types appear in the most used ones, there are also many
potentially interesting types in the top 100 that could be exploited to

166

6.3 Using semantics and user participation to customize personalization

have useful related information.
One thing that is missing in this project, due to its time constraints, is

an analysis of the potential security problems of such a system. We are
aware of the fact that merging our personal data with external services
is a potential risk, as whenever we get related information we are also
providing ours to all the services we query. We are currently leaving the
decision of sharing the profile to users themselves, but the problem is
definitely worth our attention and will be studied with more detail.

167

7 Conclusions and Future Work

Participative systems are a topic which is object of great interest, not
only as a possibly successful business, but also as an object of academic
research, presenting challenges that can be approached from the point of
views of many different sciences.

At the same time, however, even successful systems are characterized
by a strong limitation: user contributions are often unstructured and
published just for human consumption, lacking the structure that would
be useful for a machine to elaborate them automatically. As a result,
users often produce huge amounts of information which is hard to find
and reuse. Our research tried to address this problem, searching an an-
swer to the following question: given a community, a task, and a context,
what is the best tool that could be used to exploit user participation to
produce useful information? And how can we make this tool better with
semantics?

To answer the first part of the question, we studied participative sys-
tems without limiting ourselves to a single point of view, but trying to
consider both the technical and the social aspects of this subject. Ana-
lyzing both successful and unsuccessful examples of such systems on the
Internet, we concluded that their popularity often depends on many pa-
rameters which are related not only with the tools themselves, but also
with the communities that use them, their activities and the context in
which they take place. For the same reason, it is difficult to classify these
systems depending on the activity alone (as the community might decide
to force the tool on a task it was not planned for) or on the way users
participate.

To better understand the different kinds of activities users might per-
form, we provided a description of the main social systems and we sug-
gested a taxonomy which describes the different levels of participation
inside one of these systems. We then introduced basic concepts about so-
cial interactions and used them to describe what happens when a group
of people shares a common practice. Starting from these concepts we
developed a design approach that takes into account users, the system
as a whole, and the dynamics inside the community that gathers around
it. As a result, we provide a set of design patterns and suggestions that

169

7 Conclusions and Future Work

can be used to bootstrap or fine tune a social system.
To answer the second part of our research question, we focused on

some classes of participative systems and studied the different ways se-
mantics were used to improve them. We defined a methodology that
uses semantics on three different levels, respectively with the purpose of
linking data, better describing and managing knowledge, and inferring
new information with reasoning. When ontologies are involved, seman-
tics can be provided on different layers with respect to the system: for
this we devised a “temple model” which includes system, context, domain
and upper level ontologies. We then used these models to develop our
semantic applications.

Our experimental developments have been divided into three cate-
gories: semantic wikis, folksologies (that is, interactions between folk-
sonomies and ontologies), and linking open data. These categories do
not only match different tools, but also different levels of semantics (from
high to low) and user interaction (from less to more automatic). Albeit
heterogeneous these experiments might seem, they are all based on the
same theoretical bases and show how versatile our approach is. More-
over, they also carry some specific novel results:

• with our semantic wiki prototypes, we have explored new ways to
extend a wiki with semantics: ontologies could be used to describe
generic relations between articles (considered as an element of the
wiki and not as the topic they describe), to manage attachment
metadata, or to automatically create customized templates to as-
sociate structured information with a wiki article (see Chapter 4);

• our experiments on folksonomies show how tags could be auto-
matically mapped with concepts inside an ontology. We also show
how semantic disambiguation techniques could be used to solve
(part of) the limits which are characteristic of folksonomies, such
as homonymy, synonymy, and basic level variations. Finally, we
suggest new interfaces to browse and search tags which exploit the
mapping between folksonomies and ontologies (see Chapter 5);

• trying to link information available in different systems, we showed
how to exploit already existing data repositories such as Freebase to
create new types of user incentives. At the same time, we created
new potential sources of linked data by converting widely used
formats such as IMAP and browser history into a standard, shared,
RDF-based representation (see Chapter 6);

170

7.1 Future Work

During the process of evaluation of our systems we collected and an-
alyzed huge quantities of data such as tag collections, knowledge bases,
and server logs. When possible, we made the collection tools available to
the public so that these datasets could be replicated. At the same time,
we showed the results of the elaboration of these data, providing some
interesting findings:

• we have shown that the distribution of tags inside a popular folk-
sonomy is such that the a high percentage of the most used tags
are also nouns in the English language;

• we have found that different classes of tags have very different
statistical behaviors. For instance, “task organizing” tags such as
toread can be very popular but there is no collective agreement on
what has to be tagged with them, so they do not converge on the
same resource;

• we have studied the distribution of external URLs in Freebase,
showing that a good percentage of them also belongs to the most
visited websites. Moreover, we have described the distribution of
Freebase types showing that there is a huge quantity of topics that
could provide potentially interesting related information.

7.1 Future Work

As it often happens in research, our future work todo list is much longer
than the list of what we have already done: this is partly due to the lim-
its we spotted in our own research, and partly to the speed this topic is
growing, carrying with itself new emerging trends and interesting prob-
lems to solve. What we describe here is just the top of our prioritized
list.

Even if our work has provided some good results, it could still be
made more complete. Both the description of social systems and the
list of dimensions are dynamic and can change whenever a new system
comes out: rather than just updating them each time, our plan is to
share this information with a community which could be interested in
the topic and maintain it with the help of other motivated people.

Another future goal is to increase our knowledge of incentives, not
just in theory but also developing and releasing an experimental sys-
tem that would allow us to have a real user base: this would also help
us in evaluating our systems from the users’ point of view. Speaking

171

7 Conclusions and Future Work

about evaluations, even if we agree on the position expressed in [147]
we think that a participative semantic web application should have one
more dimension which is related to its social component: thus, we are
planning to define an evaluation methodology which takes into account
user interfaces, quality of data, algorithms, and social interactions.

Finally, we believe that our future direction is going to be strongly
influenced by the developments in the field of linked data. We think this
is a very interesting field from which participative systems can benefit
most and to which they can provide new value, in a virtuous cycle of
participation and semantics. Currently there are enormous quantities of
already structured data and it is easy to get excited when we see them
linked together, however we do not have to forget that this information
is finite and it has been provided by people in the first place. Finding
ways to allow people participate not only to the Web, but also to the
Web of Data is important now and is going to be even more important
in our future.

172

Bibliography

[1] International Workshop on Semantic Web Personalization, Budva,
Montenegro, 06 2006.

[2] S. F. Adafre and M. de Rijke. Discovering missing links in
wikipedia. 2005.

[3] H. S. Al-Khalifa and H. C. Davis. Towards better understanding
of folksonomic patterns. In HT ’07: Proceedings of the 18th con-
ference on Hypertext and hypermedia, pages 163–166, New York,
NY, USA, 2007. ACM Press.

[4] J. Ali. Licensed vs. user-generated video, July 2006. http:

//www.imediaconnection.com/content/10357.asp [accessed 06-
Oct-2008].

[5] S. Angeletou, M. Sabou, L. Specia, and E. Motta. Bridging the
gap between folksonomies and the semantic web: An experience
report. In Bridging the Gep between Semantic Web and Web 2.0
(SemNet 2007), pages 30–43, 2007.

[6] A. Ankolekar, M. Krötzsch, T. Tran, and D. Vrandecic. The two
cultures: mashing up web 2.0 and the semantic web. In WWW ’07:
Proceedings of the 16th international conference on World Wide
Web, pages 825–834, New York, NY, USA, 2007. ACM Press.

[7] A. Ankolekar and D. Vrandecic. Kalpana - enabling client-side
web personalization. In P. Brusilovsky and H. C. Davis, editors,
Hypertext, pages 21–26. ACM, 2008.

[8] J. Atwood. Youtube: The big copyright lie, October
2007. http://www.codinghorror.com/blog/archives/000972.

html [accessed 06-Oct-2008].

[9] S. Auer, C. Bizer, J. Lehmann, G. Kobilarov, R. Cyganiak, and
Z. Ives. Dbpedia: A nucleus for a web of open data. In K. Aberer,
K.-S. Choi, N. Noy, D. Allemang, K.-I. Lee, L. J. B. Nixon,

173

Bibliography

J. Golbeck, P. Mika, D. Maynard, G. Schreiber, and P. Cudré-
Mauroux, editors, Proceedings of the 6th International Seman-
tic Web Conference and 2nd Asian Semantic Web Conference
(ISWC/ASWC2007), Busan, South Korea, volume 4825 of LNCS,
pages 715–728, Berlin, Heidelberg, November 2007. Springer Ver-
lag.

[10] S. Auer, S. Dietzold, and T. Riechert. Ontowiki -a tool for social,
semantic collaboration. In I. C. et al. (Eds.), editor, Proceedings of
5th International Semantic Web Conference, Nov 5th-9th, Athens,
GA, USA, LNCS 4273, Berlin Heidelberg, 2006. Springer-Verlag.

[11] D. Aumueller and S. Auer. Towards a semantic wiki experience
– desktop integration and interactivity in wiksar. In S. Decker,
J. Park, D. Quan, and L. Sauermann, editors, Proceedings of the 1st
Workshop on The Semantic Desktop at the ISWC 2005 Conference,
pages 212 – 217, Galway, Ireland, November 2005.

[12] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-
Schneider. The Description Logics Handbook: Theory, Implemen-
tations, and Applications. Cambridge University Press, 2003.

[13] F. Baader and U. Sattler. An overview of tableau algorithms for
description logics. Studia Logica, 69:5–40, 2001.

[14] J. Bacher, R. Hoehndorf, and J. Kelso. Bowiki: Ontology-based
semantic wiki with abox reasoning. In C. L. 0002, S. Schaffert,
H. Skaf-Molli, and M. Völkel, editors, SemWiki, volume 360 of
CEUR Workshop Proceedings. CEUR-WS.org, 2008.

[15] J. E. Bardram. I love the system — i just don’t use it! In GROUP
’97: Proceedings of the international ACM SIGGROUP conference
on Supporting group work, pages 251–260, New York, NY, 1997.
ACM Press.

[16] T. Berners-Lee. Linked data. World wide web design issues, July
2006.

[17] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, 284(5):34–43, 2001.

[18] S. Bindelli, C. Criscione, C. A. Curino, M. L. Drago, D. Eynard,
and G. Orsi. Improving search and navigation by combining on-
tologies and social tags. In 1st International Workshop on Ambient
Data Integration, 2008. (to appear).

174

Bibliography

[19] C. Bizer. D2r map - a database to rdf mapping language. In WWW
(Posters), 2003.

[20] C. Bizer, R. Cyganiak, and T. Heath. How to publish linked data
on the web, 2007.

[21] C. Bizer and A. Seaborne. D2rq - treating non-rdf databases as
virtual rdf graphs. In ISWC2004 (posters), November 2004.

[22] S. Bloehdorn, O. Görlitz, S. Schenk, and M. Völkel. Tagfs - tag
semantics for hierarchical file systems. In Proceedings of the 6th In-
ternational Conference on Knowledge Management (I-KNOW 06),
Graz, Austria, September 6-8, 2006, September 2006.

[23] U. Bojars, A. Passant, J. G. Breslin, and S. Decker. Social net-
work and data portability using semantic web technologies. In 2nd
Workshop on Social Aspects of the Web (SAW 2008) at BIS2008,
pages 5–19, 2008.

[24] D. M. Boyd and N. B. Ellison. Social network sites: Definition,
history, and scholarship. Journal of Computer-Mediated Commu-
nication, 13(1):article 11, October 2007.

[25] S. Braun, A. Schmidt, A. Walter, G. Nagypál, and V. Zacharias.
Ontology maturing: a collaborative web 2.0 approach to ontology
engineering. In N. F. Noy, H. Alani, G. Stumme, P. Mika, Y. Sure,
and D. Vrandecic, editors, CKC, volume 273 of CEUR Workshop
Proceedings. CEUR-WS.org, 2007.

[26] J. Breslin, A. Harth, U. Bojars, and S. Decker. Towards
Semantically-Interlinked Online Communities. In Second European
Semantic Web Conference, ESWC 2005, Heraklion,, 2005.

[27] D. Bricklin. The cornucopia of the commons: How to get volunteer
labor, August 2000. http://www.bricklin.com/cornucopia.htm.

[28] S. L. Bryant, A. Forte, and A. Bruckman. Becoming wikipedian:
Transformation of participation in a collaborative online encyclo-
pedia. In GROUP ’05: Proceedings of the 2005 international ACM
SIGGROUP conference on Supporting group work, pages 1–10,
New York, NY, USA, 2005. ACM Press.

[29] M. H. Butler, J. Gilbert, A. Seaborne, and K. Smathers. Data
conversion, extraction and record linkage using xml and rdf tools
in project simile. research report, August 2004.

175

Bibliography

[30] D. Calvanese, G. D. Giacomo, M. Lenzerini, and D. Nardi. Rea-
soning in expressive description logics. In A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning, pages
1581–1634. Elsevier Science Publishers, 2001.

[31] A. Cheyer and J. Levy. A collaborative programming environment
for web interoperability. In Völkel and Schaffert [152].

[32] N. A. Chinchor. Proceedings of the Seventh Message Under-
standing Conference (MUC-7) named entity task definition. In
Proceedings of the Seventh Message Understanding Conference
(MUC-7), page 21 pages, Fairfax, VA, April 1998. version 3.5,
http://www.itl.nist.gov/iaui/894.02/related_projects/muc/.

[33] M. Crispin. Internet message access protocol - version 4rev1, March
2003. http://tools.ietf.org/html/rfc3501.

[34] C. Curino, G. Orsi, and L. Tanca. X-som: A flexible ontology
mapper. In DEXA Int. Workshop on Semantic Web Architectures
For Enterprises (SWAE), 2007.

[35] C. Curino, E. Quintarelli, and L. Tanca. Ontology-based informa-
tion tailoring. In Proc. IEEE of 2nd Int. Workshop on Database
Interoperability (InterDB 2006), pages 5–5, Atlanta, USA, April
2006.

[36] C. V. Damme, T. Coenen, and E. Vandijck. Turning a corporate
folksonomy into a lightweight corporate ontology. In W. Abramow-
icz and D. Fensel, editors, BIS, volume 7 of Lecture Notes in Busi-
ness Information Processing, pages 36–47. Springer, 2008.

[37] C. V. Damme, M. Hepp, and K. Siorpaes. Folksontology: An
integrated approach for turning folksonomies into ontologies. In
Bridging the Gep between Semantic Web and Web 2.0 (SemNet
2007), pages 57–70, 2007.

[38] F. Dawson and D. Stenerson. Internet calendaring and scheduling
core object specification (icalendar). RFC 2445 (Proposed Stan-
dard), November 1998.

[39] K. Dello, E. P. B. Simperl, and R. Tolksdorf. Creating and using
semantic web information with makna. In Völkel and Schaffert
[152].

176

Bibliography

[40] J. Domingue, M. Dzbor, and E. Motta. Collaborative semantic
web browsing with magpie. In C. Bussler, J. Davies, D. Fensel,
and R. Studer, editors, ESWS, volume 3053 of Lecture Notes in
Computer Science, pages 388–401. Springer, 2004.

[41] F. Echarte, J. J. Astrain, A. Córdoba, and J. E. Villadangos. On-
tology of folksonomy: A new modelling method. In S. Handschuh,
N. Collier, T. Groza, R. Dieng, M. Sintek, and A. de Waard, edi-
tors, SAAKM, volume 289 of CEUR Workshop Proceedings. CEUR-
WS.org, 2007.

[42] M. Eirinaki, D. Mavroeidis, G. Tsatsaronis, and M. Vazirgian-
nis. Introducing semantics in web personalization: The role
of ontologies. In M. Ackermann, B. Berendt, M. Grobelnik,
A. Hotho, D. Mladenic, G. Semeraro, M. Spiliopoulou, G. Stumme,
V. Svátek, and M. van Someren, editors, EWMF/KDO, vol-
ume 4289 of Lecture Notes in Computer Science, pages 147–162.
Springer, 2005.

[43] J. Engeström. Why some social network services work and oth-
ers don’t — or: the case for object-centered sociality, April
2005. http://www.zengestrom.com/blog/2005/04/why_some_

social.html [accessed 10-Oct-2008].

[44] Y. Engeström. Learning by expanding: an activity-theoretical ap-
proach to developmental research. Orienta-Konsultit Oy., Helsinki,
1987.

[45] M. Erdmann, A. Maedche, H. Schnurr, and S. Staab. From man-
ual to semi-automatic semantic annotation: About ontology-based
text annotation tools. In P. Buitelaar and K. H. (eds.), editors,
Proc. of the COLING 2000 Workshop on Semantic Annotation and
Intelligent Content. Morgan Kaufmann, August 2000.

[46] J. Euzenat and P. Shvaiko. Ontology matching. Springer-Verlag,
Heidelberg (DE), 2007.

[47] D. Eynard. Powerbrowsing, 2005. http://davide.eynard.it/

malawiki/PowerBrowsingEn. Accessed 10-Sep-2008.

[48] D. Eynard. Using semantics and user participation to customize
personalization. Technical report, HP Labs, 2008.

177

Bibliography

[49] D. Eynard and M. Colombetti. Exploiting user gratification for col-
laborative semantic annotation. In Semantic Web User Interaction
at CHI 2008: Exploring HCI Challenges, 2008.

[50] D. Eynard, J. Recker, and C. Sayers. An imap plugin for squirrel-
rdf. Technical report, HP Labs, 2007.

[51] C. Fellbaum. WordNet – An Electronic Lexical Database. MIT
Press, 1998.

[52] R. T. Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

[53] R. T. Fielding. REST: Architectural Styles and the Design of
Network-based Software Architectures. Doctoral dissertation, Uni-
versity of California, Irvine, 2000.

[54] D. Flejter, editor. Mailing Lists Meet The Semantic Web, 2007.

[55] N. E. Fuchs, K. Kaljurand, and G. Schneider. Attempto con-
trolled english meets the challenges of knowledge representation,
reasoning, interoperability and user interfaces. In G. Sutcliffe and
R. Goebel, editors, FLAIRS Conference, pages 664–669. AAAI
Press, 2006.

[56] D. Gillmor. We the Media: Grassroots Journalism by the People,
for the People. O’Reilly Media , Inc.„ Sebastopol, CA, August
2004. Chapter 2: The Read-Write Web.

[57] M. Gladwell. The Tipping Point: How Little Things Can Make a
Big Difference. Back Bay Books, January 2002.

[58] S. Golder and B. A. Huberman. The structure of collaborative
tagging systems. Journal of Information Science, 32(2):198–208,
April 2006.

[59] T. Gruber. Ontology of folksonomy: A mash-up of ap-
ples and oranges, 2005. http://tomgruber.org/writing/

ontology-of-folksonomy.htm.

[60] T. Gruber. Tagontology - a way to agree on the seman-
tics of tagging data, 2005. http://tomgruber.org/writing/

tagontology-tagcamp-talk.pdf.

178

Bibliography

[61] S. Guelich, S. Gundavaram, and G. Birznieks. CGI programming
with Perl. O’Reilly & Associates, Inc., Sebastopol, CA, USA, sec-
ond edition, 2000.

[62] N. Gulley. In praise of tweaking: a wiki-like programming contest.
interactions, 11(3):18–23, 2004.

[63] V. Haarslev and R. Möller. Description logic systems. In The
Description Logic Handbook, chapter 8, pages 282–305. Cambridge
University Press, 2003.

[64] P. Haase, M. Ehrig, A. Hotho, and B. Schnizler. Personalized infor-
mation access in a bibliographic peer-to-peer system. In S. Staab
and H. Stuckenschmidt, editors, Peer-to-Peer and SemanticWeb,
Decentralized Management and Exchange of Knowledge and Infor-
mation, pages 143–158. Springer, 2006.

[65] T. Hammond, T. Hannay, B. Lund, and J. Scott. Social book-
marking tools (i): A general review. D-Lib Magazine, 11, Apr
2005.

[66] T. Heath and E. Motta. Revyu.com: A reviewing and rating site
for the web of data. In K. Aberer, K.-S. Choi, N. F. Noy, D. Alle-
mang, K.-I. Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. May-
nard, R. Mizoguchi, G. Schreiber, and P. Cudré-Mauroux, editors,
ISWC/ASWC, volume 4825 of Lecture Notes in Computer Science,
pages 895–902. Springer, 2007.

[67] J. Hendler. Semantics and the network effect: A little semantics
goes a long way. In SemGrail 2007 Workshop, Redmond, Wash-
ington, USA, June 2007. Position paper.

[68] M. Hepp, K. Siorpaes, and D. Bachlechner. Harvesting wiki con-
sensus: Using wikipedia entries as vocabulary for knowledge man-
agement. IEEE Internet Computing, 11(5):54–65, 2007.

[69] B. Horowitz. Creators, synthesizers, and consumers,
2006. http://www.elatable.com/blog/2006/02/17/

creators-synthesizers-and-consumers/ [accessed 16-Oct-
2008].

[70] I. Horrocks and P. Patel-Schneider. Reducing OWL entailment to
description logic satisfiability. Journal of Web Semantics, 1(4):345–
357, 2004.

179

Bibliography

[71] I. Horrocks and P. F. Patel-Schneider. A proposal for an OWL
rules language. In Proc. of the Thirteenth International World
Wide Web Conference (WWW 2004), pages 723–731. ACM, 2004.

[72] I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From
SHIQ and RDF to OWL: The making of a web ontology language.
Journal of Web Semantics, 1(1):7–26, 2003.

[73] A. Hotho, R. Jäschke, C. Schmitz, and G. Stumme. Trend detec-
tion in folksonomies. In Y. S. Avrithis, Y. Kompatsiaris, S. Staab,
and N. E. O’Connor, editors, Proc. First International Conference
on Semantics And Digital Media Technology (SAMT), volume 4306
of LNCS, pages 56–70, Heidelberg, dec 2006. Springer.

[74] P. M. Johnson. A glossary of political economy terms: Incen-
tive, 2005. http://www.auburn.edu/~johnspm/gloss/ [accessed
13-Oct-2008].

[75] J. Kahan and M.-R. Koivunen. Annotea: an open rdf infrastruc-
ture for shared web annotations. In WWW ’01: Proceedings of the
10th international conference on World Wide Web, pages 623–632,
New York, NY, USA, 2001. ACM Press.

[76] N. Kennedy. Sniff browser history for improved user expe-
rience, 2008. http://www.niallkennedy.com/blog/2008/02/

browser-history-sniff.html; accessed 08-Sep-2008.

[77] H. L. Kim, J. G. Breslin, S.-K. Yang, and H.-G. Kim. Social
semantic cloud of tag: Semantic model for social tagging. In
N. T. Nguyen, G. Jo, R. J. Howlett, and L. C. Jain, editors, KES-
AMSTA, volume 4953 of Lecture Notes in Computer Science, pages
83–92. Springer, 2008.

[78] A. Kiryakov, B. Popov, I. Terziev, D. Manov, and D. Ognyanoff.
Semantic annotation, indexing, and retrieval. Journal of Web Se-
mantics: Science, Services and Agents on the World Wide We,
2(1):49–79, 2004.

[79] P. Kollock. The economics of online cooperation: Gifts and public
goods in cyberspace. In M. Smith and P. Kollock, editors, Com-
munities in Cyberspace. Routledge, London, 1998.

[80] E. Kroski. The hive mind: Folksonomies and user-based tag-
ging, Dec 2005. http://infotangle.blogsome.com/2005/12/07/
the-hive-mind-folksonomies-and-user-based-tagging/.

180

Bibliography

[81] M. Krötzsch, S. Schaffert, and D. Vrandecic. Reasoning in seman-
tic wikis. In G. Antoniou, U. Aßmann, C. Baroglio, S. Decker,
N. Henze, P.-L. Patranjan, and R. Tolksdorf, editors, Reasoning
Web, volume 4636 of Lecture Notes in Computer Science, pages
310–329. Springer, 2007.

[82] M. Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and R. Studer.
Semantic wikipedia. Journal of Web Semantics, DEC 2007. To
appear.

[83] T. Kuhn. Acewiki: Collaborative ontology management in con-
trolled natural language. In C. L. 0002, S. Schaffert, H. Skaf-Molli,
and M. Völkel, editors, SemWiki, volume 360 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

[84] K. Kuutti. Activity theory as a potential framework for human-
computer interaction research. pages 17–44, 1995.

[85] C. Lange. Swim - a semantic wiki for mathematical knowledge
management. In S. Bechhofer, M. Hauswirth, J. Hoffmann, and
M. Koubarakis, editors, ESWC, volume 5021 of Lecture Notes in
Computer Science, pages 832–837. Springer, 2008.

[86] D. Laniado, D. Eynard, and M. Colombetti. A semantic tool to
support navigation in a folksonomy. In HT ’07: Proceedings of the
18th conference on Hypertext and hypermedia, pages 153–154, New
York, NY, USA, 2007. ACM Press.

[87] D. Laniado, D. Eynard, and M. Colombetti. Using wordnet to turn
a folksonomy into a hierarchy of concepts. In Semantic Web Appli-
cation and Perspectives - Fourth Italian Semantic Web Workshop,
pages 192–201, Dec 2007.

[88] J. Lanier. Digital maoism: The hazards of the new online col-
lectivism, 2006. http://www.edge.org/3rd_culture/lanier06/

lanier06_index.html.

[89] O. Lassila and R. Swick. Resource description framework (rdf)
model and syntax specification, February 1999. http://www.w3.

org/TR/1999/REC-rdf-syntax-19990222/.

[90] J. Lave and E. Wenger. Situated Learning: Legitimate Peripheral
Participation. Cambridge University Press, New York, 1991.

181

Bibliography

[91] C. Leacock, M. Chodorow, and G. A. Miller. Using corpus statis-
tics and wordnet relations for sense identification. Computational
Linguistics, 24(1):147–165, 1998.

[92] B. Leuf and W. Cunningham. The Wiki Way: Collaboration and
Sharing on the Internet. Addison-Wesley, 2001.

[93] L. Liu and M. T. Oszu. Encyclopedia of Database Systems.
Springer, 2008.

[94] B. Lund, T. Hammond, M. Flack, and T. Hannay. Social book-
marking tools (ii): A case study - connotea. D-Lib Magazine, 11,
Apr 2005.

[95] C. Marlow, M. Naaman, D. Boyd, and M. Davis. Ht06, tagging pa-
per, taxonomy, flickr, academic article, to read. In HYPERTEXT
’06: Proceedings of the seventeenth conference on Hypertext and
hypermedia, pages 31–40, New York, NY, USA, 2006. ACM Press.

[96] B. Mason and S. Thomas. A million penguins research report.
Technical report, Institute of Creative Technologies,De Montfort
University, Leicester, UK, April 2008. http://www.ioct.dmu.ac.
uk/projects/amillionpenguinsreport.pdf.

[97] A. Mathes. Folksonomies - cooperative classification and commu-
nication through shared metadata. http://www.adammathes.com/
academic/computer-mediated-communication/folksonomies.

html, December 2004.

[98] R. Mayfield. Power law of participation, 2006. http:

//ross.typepad.com/blog/2006/04/power_law_of_pa.html [ac-
cessed 16-Oct-2008].

[99] S. Mazzocchi. Folksologies: de-idealizing ontologies, April 2005.
http://www.betaversion.org/~stefano/linotype/news/85/.

[100] D. L. McGuinness and F. van Harmelen. OWL Web Ontology Lan-
guage overview. W3C recommendation, World Wide Web Consor-
tium, February 2004.

[101] U. A. Mejias. A del.icio.us study, December 2004. http://ideant.
typepad.com/ideant/2004/12/a_delicious_stu.html.

[102] U. A. Mejias. Tag literacy, April 2005. http://ideant.typepad.

com/ideant/2005/04/tag_literacy.html.

182

Bibliography

[103] E. Menchen. Feedback, motivation and collectivity in a social book-
marking system, 06 2005. http://kairosnews.org/node/4338.

[104] P. Merholz. Metadata for the masses, oct 2004. http:

//adaptivepath.com/publications/essays/archives/000361.

php.

[105] P. Mika. Ontologies are us: A unified model of social networks
and semantics. In International Semantic Web Conference, LNCS,
pages 522–536. Springer, 2005.

[106] B. Motik, B. C. Grau, I. Horrocks, Z. Wu, A. Fokoue, and C. Lutz.
Owl 2 web ontology language: Profiles. W3c working draft, W3C,
October 2008.

[107] R. Newmann. Tag ontology design, 2005. http://www.holygoat.
co.uk/projects/tags/.

[108] M. Noll and C. Meinel. Web search personalization via social book-
marking and tagging. In K. Aberer, K.-S. Choi, N. Noy, D. Alle-
mang, K.-I. Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard,
G. Schreiber, and P. Cudré-Mauroux, editors, Proceedings of the
6th International Semantic Web Conference and 2nd Asian Seman-
tic Web Conference (ISWC/ASWC2007), Busan, South Korea, vol-
ume 4825 of LNCS, pages 365–378, Berlin, Heidelberg, November
2007. Springer Verlag.

[109] D. A. Norman. The design of everyday things. Basic Books, New
York, 2002.

[110] T. O’Reilly. What is web 2.0. design patterns and business models
for the next generation of software. September 2005.

[111] E. Oren. Semperwiki: a semantic personal wiki. In S. Decker,
J. Park, D. Quan, and L. Sauermann, editors, Proceedings of the 1st
Workshop on The Semantic Desktop at the ISWC 2005 Conference,
pages 107 – 122, Galway, Ireland, November 2005.

[112] E. Oren, K. Möller, S. Scerri, S. Handschuh, and M. Sintek. What
are semantic annotations? Technical report, DERI Galway, 2006.

[113] H. V. D. Parunak, T. C. Belding, R. Hilscher, and S. Brueck-
ner. Modeling and managing collective cognitive convergence. In
L. Padgham, D. C. Parkes, J. Müller, and S. Parsons, editors, AA-
MAS (3), pages 1505–1508. IFAAMAS, 2008.

183

Bibliography

[114] A. Passant. Using Ontologies to Strengthen Folksonomies and En-
rich Information Retrieval in Weblogs. In Proceedings of the First
International Conference on Weblogs and Social Media (ICWSM),
Boulder, Colorado, March 2007.

[115] S. Patwardhan, T. Pedersen, and S. Banerjee. Sensere-
late::targetword - a generalized framework for word sense dis-
ambiguation. In Proceedings of the ACL Interactive Poster and
Demonstration Sessions, pages 73–76, Ann Arbor, MI, June 2005.

[116] T. Pedersen, S. Patwardhan, and J. Michelizzi. Wordnet::similarity
- measuring the relatedness of concepts. In AAAI, pages 1024–1025,
2004.

[117] E. Prud’hommeaux and A. Seaborne. Sparql query language for
rdf. W3c recommendation, W3C, January 2008.

[118] E. Quintarelli. Folksonomies: power to the people, June 2005.
http://www-dimat.unipv.it/biblio/isko/doc/folksonomies.

htm.

[119] E. Quintarelli, L. Rosati, and A. Resmini. Facetag: Integrating
bottom-up and top-down classification in a social tagging system.
In IA Summit 2007, 2007.

[120] C. Rahhal, H. Skaf-Molli, and P. Molli. Swooki: A peer-to-peer
semantic wiki. In C. L. 0002, S. Schaffert, H. Skaf-Molli, and
M. Völkel, editors, SemWiki, volume 360 of CEUR Workshop Pro-
ceedings. CEUR-WS.org, 2008.

[121] L. Reeve and H. Han. Semantic annotation for semantic social
networks using community resources. AIS SIGSEMIS Bulletin,
2(3-4):52–56, 2005.

[122] L. H. Reeve and H. Han. Survey of semantic annotation platforms.
In H. Haddad, L. M. Liebrock, A. Omicini, and R. L. Wainwright,
editors, SAC, pages 1634–1638. ACM, 2005.

[123] E. A. M. Ruiz-Casado and P. Castells. From wikipedia to semantic
relationships: a semi-automated annotation approach. 2006.

[124] M. Sabou, M. d’Aquin, and E. Motta. Using the semantic web
as background knowledge for ontology mapping. In P. Shvaiko,
J. Euzenat, N. F. Noy, H. Stuckenschmidt, V. R. Benjamins, and

184

Bibliography

M. Uschold, editors, Ontology Matching, volume 225 of CEUR
Workshop Proceedings. CEUR-WS.org, 2006.

[125] M. Saleem. Why the wisdom of crowds fails
on digg, 2006. http://themulife.com/?p=145.
Accessed 11-Oct-2008 from its cached copy at
http://www.google.com/search?q=cache:Uj2wkQrBeCAJ:www.themulife.com/wp-
trackback.php

[126] L. Sauermann and S. Schwarz. Gnowsis adapter framework: Treat-
ing structured data sources as virtual rdf graphs. In Y. Gil,
E. Motta, V. R. Benjamins, and M. A. Musen, editors, Proceedings
of the ISWC 2005, number 3729 in LNCS, page p. 1016 ff., Galway,
Ireland, November 6-10, 2005 2005. Springer.

[127] S. Schaffert. Ikewiki: A semantic wiki for collaborative knowledge
management. In 1st International Workshop on Semantic Tech-
nologies in Collaborative Applications (STICA’06), Manchester,
UK, June 2006.

[128] S. Schaffert, D. Bischof, T. Bürger, A. Gruber, W. Hilzensauer,
and S. Schaffert. Learning with semantic wikis. In Völkel and
Schaffert [152].

[129] C. Schmitz, A. Hotho, R. Jäschke, and G. Stumme. Mining associ-
ation rules in folksonomies. In V. Batagelj, H.-H. Bock, A. Ferligoj,
and A. Žiberna, editors, Data Science and Classification. Proceed-
ings of the 10th IFCS Conf., Studies in Classification, Data Analy-
sis, and Knowledge Organization, pages 261–270, Heidelberg, July
2006. Springer.

[130] C. Schwarm and M. Sevior. Gocollab – peer to peer docu-
ment collaboration, 2005. http://gnomejournal.org/article/

31/gocollab----peer-to-peer-document-collaboration.

[131] T. Segaran. Programming Collective Intelligence: Building Smart
Web 2.0 Applications. O’Reilly, Sebastopol, CA, USA, 2007.

[132] H. Shepard, H. Halpin, and V. Robu. The dynamics and semantics
of collaborative tagging. In Proc. of the 1st Semantic Authoring
and Annotation Workshop (SAAW2006), 2006.

[133] C. Shirky. Ontology is overrated: Categories, links, and tags, 2005.
http://www.shirky.com/writings/ontology_overrated.html.

185

Bibliography

[134] D. Sifry. The state of the live web, april 2007. Technical report,
Technorati, 2007.

[135] D. Sims and R. Dornfest. Steven johnson on “emergence”,
2 2002. http://www.oreillynet.com/pub/a/network/2002/02/

22/johnson.html [accessed 07-Oct-2008].

[136] R. Sinha. A cognitive analysis of tagging, September
2005. http://www.rashmisinha.com/archives/05_09/

tagging-cognitive.html.

[137] R. Sinha. A social analysis of tagging, January 2006. http://www.
rashmisinha.com/archives/06_01/social-tagging.html.

[138] K. Siorpaes and M. Hepp. myontology: The marriage of ontology
engineering and collective intelligence. In Bridging the Gep between
Semantic Web and Web 2.0 (SemNet 2007), pages 127–138, 2007.

[139] E. Sirin and B. Parsia. Pellet: An owl dl reasoner. In Description
Logics, 2004.

[140] D. Steer. Squirrelrdf, 2006. http://jena.sourceforge.net/

SquirrelRDF/.

[141] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of se-
mantic knowledge. Proceedings of the 16th international conference
on World Wide Web, pages 697–706, 2007.

[142] J. Surowiecki. The wisdom of crowds. Doubleday, 2004.

[143] A. Swartz. Musicbrainz: A semantic web service. IEEE Intelligent
Systems, 17(1):76–77, 2002.

[144] R. Tazzoli, P. Castagna, and S. E. Campanini. Towards a Seman-
tic WikiWikiWeb. In 3rd International Semantic Web Conference
(ISWC2004), Hiroshima, Japan, 2004.

[145] C. W. Thompson, P. Pazandak, V. Vasudevan, F. Manola,
M. Palmer, G. Hansen, and T. J. Bannon. Intermediary architec-
ture: Interposing middleware object services between web client
and server. ACM Comput. Surv., 31(2es):14, 1999.

[146] C. Tziviskou and M. Brambilla. Semantic personalization of web
portal contents. In C. L. Williamson, M. E. Zurko, P. F. Patel-
Schneider, and P. J. Shenoy, editors, WWW, pages 1245–1246.
ACM, 2007.

186

Bibliography

[147] A. A. J. van Ossenbruggen and M. Hildebrand. Why evaluating
semantic web applications is difficult. In Semantic Web User Inter-
action at CHI 2008: Exploring HCI Challenges, 2008. To appear.

[148] T. Vander Wal. Folksonomy explanations, 2005. http://www.

vanderwal.net/random/entrysel.php?blog=1622.

[149] T. Vander Wal. Folksonomy, 2007. http://vanderwal.net/

folksonomy.html.

[150] M. Vargas-Vera, E. Motta, J. Domingue, M. Lanzoni, A. Stutt,
and F. Ciravegna. MnM: Ontology Driven Semi-Automatic and
Automatic Support for Semantic Markup. In 13th International
Conference on Knowledge Engineering and Knowledge Manage-
ment (EKAW02), pages 379–391, Siguenza, Spain, 2002.

[151] M. Völkel, M. Krötzsch, D. Vrandecic, H. Haller, and R. Studer.
Semantic wikipedia. In Proceedings of the 15th international con-
ference on World Wide Web, Edinburgh, Scotland, 2006.

[152] M. Völkel and S. Schaffert, editors. Proceedings of the First Work-
shop on Semantic Wikis – From Wiki To Semantics, Workshop on
Semantic Wikis. ESWC2006, June 2006.

[153] L. S. Vygotsky. Mind in Society: The Development of Higher Psy-
chological Processes. Harvard University Press, Cambridge, MA,
1978.

[154] T. V. Wal. Getting to know collective and collaborative,
March 2008. http://www.personalinfocloud.com/2008/03/

getting-to-know.html.

[155] S. Weiss, P. Urso, and P. Molli. Wooki: A p2p wiki-based collabo-
rative writing tool. In B. Benatallah, F. Casati, D. Georgakopou-
los, C. Bartolini, W. Sadiq, and C. Godart, editors, WISE, vol-
ume 4831 of Lecture Notes in Computer Science, pages 503–512.
Springer, 2007.

[156] E. Wenger. Communities of Practice. Learning, meaning, and iden-
tity. Cambridge University Press, New York, Port Chester, Mel-
bourne, Sydney, 1998.

[157] E. Wenger, R. McDermott, and W. Snyder. Cultivating Commu-
nities of Practice. Harvard Business School Press, 2002.

187

Bibliography

[158] Wikipedia. Collaborative software — Wikipedia, the free encyclo-
pedia, 2008. [Online; accessed 02-Sep-2008].

[159] Wikipedia. Lamp (software bundle) — Wikipedia, the free ency-
clopedia, 2008. [Online; accessed 01-Sep-2008].

[160] Wikipedia. Seigenthaler incident — Wikipedia, the free encyclo-
pedia, 2008. [Online; accessed 01-Sep-2008].

[161] Wikipedia. Usenet — Wikipedia, the free encyclopedia, 2008. [On-
line; accessed 02-Sep-2008].

[162] F. Wu and D. S. Weld. Autonomously semantifying wikipedia.
In CIKM ’07: Proceedings of the sixteenth ACM conference on
Conference on information and knowledge management, pages 41–
50, New York, NY, USA, 2007. ACM.

[163] W. Yung. Bring existing data to the semantic web,
May 2007. http://www-128.ibm.com/developerworks/library/
x-semweb.html.

[164] W. Yung. Using sparql for good: Querying ldap with squirrelrdf.
Blog post, May 2007. http://wingerz.com/blog/2007/05/10/

using-sparql-for-good-querying-ldap-with-squirrelrdf/.

[165] V. Zacharias and S. Braun. Soboleo – social bookmarking and
lighweight engineering of ontologies. In N. F. Noy, H. Alani,
G. Stumme, P. Mika, Y. Sure, and D. Vrandecic, editors, CKC,
volume 273 of CEUR Workshop Proceedings. CEUR-WS.org, 2007.

188

