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Abstract Ontologies have become an important means for structuring

knowledge and building knowledge-intensive systems. For this purpose,

e�orts have been made to facilitate the ontology engineering process, in

particular the acquisition of ontologies from domain texts. We present

a general architecture for discovering conceptual structures and engi-

neering ontologies. Based on our generic architecture we describe a case

study for mining ontologies from text using methods based on dictio-

naries and natural language text. The case study has been carried out

in the telecommunications domain. Supporting the overall text ontology

engineering process, our comprehensive approach combines dictionary

parsing mechanisms for acquiring a domain-speci�c concept taxonomy

with a discovery mechanism for the acquisition of non-taxonomic con-

ceptual relations.

1 Introduction

Ontologies1 have shown their usefulness in application areas such as intelligent
information integration [23], information brokering [20] and natural-language
processing [21], to name but a few. However, their wide-spread usage is still
hindered by ontology engineering being rather time-consuming and, hence, ex-
pensive.

A number of proposals have been made to facilitate ontological engineer-
ing through automatic discovery from domain data, domain-speci�c natural lan-
guage texts in particular (cf. [1,3,5,13,14,16,24]). However, most approaches have
\only" tackled one step in the overall ontology engineering process, e.g. the acqui-
sition of concepts, the establishment of a concept taxonomy or the discovering of
non-taxonomic conceptual relationships, whereas one must consider the overall
process when building real-world applications.

In this paper we describe a case study for mining ontologies from textual
resources, viz. from technical dictionaries and from domain texts, where we

1 We restrict our attention in this paper to domain ontologies that describe a partic-

ular small model of of the world as relevant to applications, in contrast to top-level

ontologies and representational ontologies that aim at the description of generally ap-

plicable conceptual structures and meta-structures, respectively, and that are mostly

based on philosophical and logical point of views rather than focused on applications.



consider all three before-mentioned steps. For this purpose we combine exist-

ing techniques for the acquisition of concepts and a concept taxonomy with a

new approach for mining non-taxonomic conceptual relationships from natural

language in an integrated framework for manual and semi-automatic ontology

engineering.

The remainder of the paper is as follows. In Section 2 we will give an overview

of the overall system architecture, in particular about which linguistic processing

has been done and how discovered conceptual structures are added to the ontol-

ogy using a graphical ontology engineering environment. Subsequently, we will

focus on the techniques for acquiring concepts and concept hierarchies which are

an essential part for the algorithm discovering non-taxonomic conceptual rela-

tions. This algorithm will be presented in Section 4. An example will show some

promising results we obtained applying our mechanisms for mining ontologies

from text. Before we conclude we give an overview of related work in Section 5.

2 Architecture

The purpose of this section is to give an overview of the architecture of our ap-

proach. The process of semi-automatic ontology acquisition is embedded in an

application that comprises several core features described as a kind of pipeline in

the following. Nevertheless, the reader may bear in mind that the overall develop-

ment of ontologies remains a cyclic process (cf. [12]). In fact, we provide a broad

set of interactions such that the engineer may start with primitive methods �rst.

These methods require very little or even no background knowledge, but they

may also be restricted to return only simple hints, like term frequencies. While

the knowledge model matures during the semi-automatic engineering process,

the engineer may turn towards more advanced and more knowledge-intensive

algorithms, such as our mechanism for discovering generalized relations.

2.1 Text & Processing Management Component

The ontology engineer uses the Text & Processing Management component to

select domain resources (dictionaries, domain texts, . . . ) exploited in the further

discovery process. She chooses among a set of text (pre-)processing methods

available on the Text Processing Server and among a set of algorithms avail-

able at the Learning & Discovering component. The former module returns text

that is annotated by XML and this XML-tagged text is fed to the Learning &

Discovering component described in subsection 2.3.

2.2 Text Processing Server

The Text Processing Server comprises a broad set of di�erent methods. In

our case, it contains a shallow text processor based on the core system SMES

(Saarbr�ucken Message Extraction System; cf. [15]). SMES is a system that per-

forms syntactic analysis on natural language documents. In general, the Text
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Figure 1. Architecture of the Ontology Learning Environment

Processing Server is organized in modules, such as a tokenizer, morphological

and lexical processing, and chunk parsing that use lexical resources to produce

mixed syntactic/semantic information. The results of text processing are stored

in annotations using XML-tagged text.

SMES is a generic component that adheres to several principles that are

crucial for our objectives. (i), it is fast fast and robust, (ii), it yields \normalized"

terms, and, (iii), it returns pairs of concepts the coupling of which is motivated

through linguistic constraints on the corresponding textual terms. In addition, we

made some minor changes such that principle (iv), linguistic processing delivering
a high recall on the number of dependency relations occuring in a text, is also

guaranteed.

The Architecture of SMES comprises a tokenizer based on regular expres-

sions, a lexical analysis component including a word and a domain lexicon, and
a chunk parser.

Tokenizer. Its main task is to scan the text in order to identify boundaries of

words and complex expressions like \$20.00" or \Baden-Wuerttemberg"2, and

to expand abbreviations.

Lexicon. The lexicon contains more than 120.000 stem entries and more than

12,000 subcategorization frames describing information used for lexical analysis

2 Baden-Wuerttemberg is a region in the south west of Germany.



and chunk parsing. Furthermore, the domain-speci�c part of the lexicon asso-

ciates word stems with concepts that are available in the concept taxonomy.

The reader may note that at the beginning there are no or only few mappings

from word stems to (some few, domain-independent) concepts available in the

domain lexicon. Only with the extension of the ontology the domain-speci�c part

of the lexicon is augmented, too.
3
At the beginning the ontology engineer uses

simple means, e.g. word counts, in order to establish new concepts and their

linkages to word stems. By doing so, she leverages the linguistic processing and,

thus, the further knowledge discovery process in subsequent stages.

Lexical Analysis uses the lexicon to perform, (1), morphological analysis, i.e.,
the identi�cation of the canonical common stem of a set of related word forms

and the analysis of compounds, (2), recognition of name entities, (3), retrieval
of domain-speci�c information, and, (4), part-of-speech tagging:

1. In German compounds are extremely frequent and, hence, their analysis into

their parts, e.g. \database" becoming \data" and \base", is crucial and may

yield interesting relationships between concepts. Furthermore, morphological

analysis returns possible readings for the words concerned, e.g. the noun and

the verb reading for a word like \man" in \The old man the boats."

2. Processing of named entities includes the recognition of proper and company

names like \Deutsche Telekom AG" as single, complex entities, as well as the

recognition and transformation of complex time and date expressions into a

canonical format, e.g. \January 1st, 2000" becomes \1/1/2000".

3. The next step associates single words or complex expressions with a concept

from the ontology if a corresponding entry in the domain-speci�c part of

the lexicon exists. E.g., the expression \Deutsche Telekom AG" is associated

with the concept TKCompany.

4. Finally, part-of-speech tagging disambiguates the reading returned frommor-

phological analysis of words or complex expressions using the local context.

Lexical analysis is the �rst of two primary outputs from SMES that we ex-

ploit. It returns \normalized" readings for di�erent word forms (e.g., singular vs.

plural) that we want to abstract from in order to add a corresponding concept

to the ontology.

Chunk Parser. SMES uses weighted �nite state transducers to eÆciently pro-

cess phrasal and sentential patterns. The parser works on the phrasal level,

before it analyzes the overall sentence. Grammatical functions (such as subject,

direct-object) are determined for each dependency-based sentential structure on

the basis of subcategorizations frames in the lexicon.

The chunk parser of SMES returnes the second primary output that we use,

viz. dependency relations [9] found through lexical analysis (compound process-

ing) and through parsing at the phrase and sentential level. We take advantage of

the fact that syntactic dependency relations coincide rather closely with seman-

tic relations holding between the very same entities (cf. [6]). Thus, we consider

3 In the future, we also want to extend the lexicon proper during domain adaptation.



syntactic results as the signposts that points our discovery algorithms into the di-

rection of semantic relationships. We feed those conceptual pairs to the learning

algorithm the corresponding terms of which are dependentially related. Thereby,

the grammatical dependency relation need not even hold directly between two

conceptually meaningful entities. For instance, once we have the linkages be-

tween \France Telecom" and \Paris" denoting instances of Company and City,

respectively, in example (1), we may conjecture a semantic relationship between

Company and City. The motivation is derived from the dependential relationships

between \France Telecom", \in", and \Paris". The preposition \in" acts as a

mediator that incurs the conceptual pairing of Company with City (cf. [17] for a

comprehensive survey of mediated conceptual relationships).

(1) France Telecom in Paris o�ers the new DSL technology.

Heuristics. Chunk parsing such as performed by SMES still returns many

phrasal entities that are not related within or across sentence boundaries. This

however means that our approach would be doomed to miss many relations that

often occur in the corpus, but that may not be detected due to the limited ca-

pabilities of SMES. For instance, it does not attach prepositional phrases in any

way and it does not handle anaphora, to name but two desiderata. We have

decided that we needed a high recall of the linguistic dependency relations in-

volved, even if that would incur a loss of linguistic precision. The motivation

is that with a low recall of dependency relations the subsequent algorithm may

learn only very little, while with less precision the learning algorithm may still

sort out part of the noise. Therefore, the SMES output has been extended to

include heuristic correlations beside linguistics-based dependency relations:

{ The NP-PP-heuristic attaches all prepositional phrases to adjacent noun

phrases.

{ The sentence-heuristic relates all concepts contained in one sentence if other

criteria fail. This is a crude heuristic that needs further re�nement. However,

we found that it yielded many interesting relations, e.g. for enumerations,

which could not be parsed successfully.

Thus, these heuristics complement the output produced by the chunk parser.

To sum up, linguistic processing outputs \normalized" terms and sets of con-

cept pairs, CP := f(ai;1; ai;2)jai;j 2 Cg. Normalization is based on lexical analy-

sis and the coupling of concepts is motivated through various direct and mediated

linguistic constraints or by several general or domain-speci�c heuristic strategies.

2.3 Learning & Discovering component

The Learning & Discovering component uses various algorithms on the annotated

texts:

1. Conventional term extraction mechanisms are applied to extract relevant

terms from the corpus.



2. An approach for mining a concept taxonomy from a dictionary, which is

based on regular expression-based pattern matching algorithms, described

in further detail in Section 3

3. An approach for mining non-taxonomic relations, that uses the learning al-

gorithm for discovering generalized association rules described in Section 4.

Conceptual structures that exist at learning time (e.g. concepts or a concept

taxonomy) may be incorporated into the learning algorithms as background

knowledge. The evaluation of the applied algorithms such as described in [13] is

performed in a submodule based on the results of the learning algorithm.

2.4 Ontology Engineering Environment OntoEdit

The Ontology Engineering Environment OntoEdit, a submodule of the Ontology

Learning Environment \Text-To-Onto" (cf. Figure 2), supports the ontology

engineer in semi-automatically adding newly discovered conceptual structures

to the ontology.4 In addition to core capabilities for structuring the ontology,

the engineering environment provides some additional features for the purpose of

documentation, maintenance, and ontology exchange. OntoEdit internally stores

ontologies using an XML serialization of the ontology model. OntoEdit accesses

an inference engine that is based on Frame-Logic.5

2.5 System Wrap-up

The principle idea of our framework is based on applications of knowledge dis-

covery techniques based on input from linguistic processing in a semi-automatic

bootstrapping approach. The learning mechanisms in our system do not de-

termine the complete structure, but they are only meant to help the ontology

engineer with building a domain ontology by giving recommendations for adding

concepts or relations. The system is also not intended to be used in a pipeline

fashion, but rather we conceive that simple methods should be exploited �rst in

order to determine the scope of the ontology and the set of relevant concepts.

With the extension of the ontology, conceptual and linguistic resources are aug-

mented and, thus, they nourish more complex and fruitful linguistic processing

and knowledge discovery in subsequent passes through the ontology learning and

engineering cycle.

4 A comprehensive description of the ontology engineering system OntoEdit and the

underlying methodology is given in [22].
5 F-Logic is a frame-logic representation language conceived by [10]. In the implemen-
tation by Angele and Decker that we use, F-Logic is a proper subset of �rst-order

predicate logic. Concepts and relations are rei�ed and, hence, may be treated as �rst-
order objects over which quanti�cation is possible. For eÆcient processing, F-Logic
is translated into a datalog-style representation (cf. [11,2]).



Figure 2. OntoEdit

3 Mining a concept taxonomy from a telecommunications

dictionary

In order to provide a starting set of concepts and their taxonomic relations for

the domain ontology of our case study, we have exploited the structuring of a

freely available dictionary from the telecommunications domain in the �rst step.

In order to make use of the resulting ontology as input for the discovery of

further conceptual relations (cf. Section 4), we also had to acquire the mapping

between concepts and words.

Example

A dictionary containing natural-language de�nitions of terms in the telecommu-
nications domain, which is freely available at
http://www.interest.de/online/tkglossar/index.html , served as a good starting point
for the case study. The given 1465 HTML pages were downloaded and trans-
formed into our prede�ned XML representation for dictionaries, such as given
in the following small example:

<termEntry>

<admin>



<entrynumber>1328</entrynumber>

</admin>

<term lang='Deutsch'> Kommunikationsserver

<description type='Definition'>

<descriptionText>

Zentrale Funktionseinheit, welche fuer

mehrere Benutzer Kommunikationsdienste erbringt.

</descriptionText>

</description>

</term>

</termEntry>

Every entry has been de�ned as a concept and a corresponding domain lex-

icon entry of this concept (reduced to its word stem) has been generated using

the Text Processing Server lexical analysis. The de�nitions of the terms have

also been processed using the Text Processing Server.

Similar to the work described in [8,14], we have de�ned several lexico-syntactic

patterns in the form of regular expressions for extracting ISA relations between

concepts on the given processed and normalized dictionary de�nitions. In our

small example above the following simple pattern, which is expressed in natural

language here for ease of presentation, matched:

"the last NP of the de�nition before the last comma represents a hypernym

of the concept to be de�ned"

The patterns have resulted in ISA relations, such as between the concept

Kommunikationsserver (engl. communication server) and Funktionseinheit (engl. func-

tional unit).

However, we have to emphasize that for building a representative domain

ontology, the described dictionary parsing mechanisms are not suÆcient. Typi-

cally, domain-speci�c dictionaries describe terms only at a very detailed technical

level focusing on the leaf concepts of the taxonomy. For instance, the above men-

tioned dictionary lacked many important concepts, such as private customer and

business customer. For this reason, we have also applied term extraction mecha-

nisms based on the t�df measure [18] on the given corpus in order to propose

frequent terms as candidate concepts. These concepts were then added manually

to the domain ontology.

This mixed approach using a combination of automatic extraction mecha-

nisms and user modeling resulted in an core ontology with 265 concepts con-

nected through 312 ISA relations. Additionally, 620 domain lexicon entries map-

ping words to concepts have been brought into the system.

4 Mining Generic Relations from Text

Our text mining mechanism for discovering relations between concepts is based

on the algorithm for discovering generalized association rules proposed by Srikant

and Agrawal [19]. Their algorithm is used for well-known applications of data

mining, viz. �nding associations that occur between items, e.g. supermarket



products, in a set of transactions, e.g. customers' purchases. The algorithm aims

at descriptions at the appropriate level of abstraction, e.g. \snacks are purchased

together with drinks" rather than \chips are purchased with beer" and \peanuts

are purchased with soda".

The basic association rule algorithm is provided with a set of transactions

T := ftiji = 1 : : : ng, where each transaction ti consists of a set of items ti :=

fai;j jj = 1 : : :mi; ai;j 2 Cg and each item ai;j is from a set of concepts C. The

algorithm computes association rules Xk ) Yk (Xk; Yk � C;Xk \ Yk = fg)
such that measures for support and con�dence exceed user-de�ned thresholds.

Thereby, support of a ruleXk ) Yk is the percentage of transactions that contain

Xk [ Yk as a subset, and con�dence for Xk ) Yk is de�ned as the percentage of

transactions that Yk is seen when Xk appears in a transaction, viz.

(2) support(Xk ) Yk) =
jftijXk [ Yk � tigj

n

(3) con�dence(Xk ) Yk) =
jftijXk [ Yk � tigj
jftijXk � tigj

Srikant and Agrawal have extended this basic mechanism to determine asso-

ciations at the right level of a taxonomy, formally given by a taxonomic relation

H � C�C. For this purpose, they �rst extend each transaction ti to also include

each ancestor of a particular item ai;j , i.e. t
0

i := ti [ fai;lj(ai;j ; ai;l) 2 Hg. Then,
they compute con�dence and support for all possible association rules Xk ) Yk
where Yk does not contain an ancestor of Xk as this would be a trivially valid

association. Finally, they prune all those association rules Xk ) Yk that are

subsumed by an \ancestral" rule X̂k ) Ŷk , the itemsets X̂k; Ŷk of which only

contain ancestors or identical items of their corresponding itemset in Xk ) Yk.

For the discovery of conceptual relations we may directly build on their

scheme, as described in the following four steps that summarize our learning

module:

1. Determine T := ffai;1; ai;2; : : : ; ai;m0

i
gj(ai;1; ai;2) 2 CP ^

l � 3! ((ai;1; ai;l) 2 H _ (ai;2; ai;l) 2 H)g.
2. Determine support for all association rules Xk ) Yk, where jXkj = jYk j = 1.

3. Determine con�dence for all association rules Xk ) Yk that exceed user-

de�ned support in step 2.

4. Output association rules that exceed user-de�ned con�dence in step 3 and

that are not pruned by ancestral rules with higher or equal con�dence and

support.

The reader may note that we here have chosen a baseline approach consid-

ering the determination of the set of transactions T . Actually, one may conceive

of many strategies that cluster multiple concept pairs into one transaction.

For instance, let us assume a set of 100 texts each describing a particular

client in detail. Each private client might come with an address, but it might also

have an elaborate description of the di�erent types of private telecomunication

services and di�erent calling types resulting in 10,000 concept pairs returned

from linguistic processing. Our baseline choice considers each concept pair as



a transaction. Then support for the rule fPrivateClientg)fAddressg is equal or,

much more probably, (far) less than 1%, while rules about telecommunication

services and di�erent calling types might achieve ratings of several percentage

points. This means that an important relationship between fPrivateClientg and

fAddressg might get lost among other conceptual relationships. In contrast, if one

considers complete texts to constitute transactions, an ideal linguistic processor

might lead to more balanced support measures for fPrivateClientg)fAddressg and
fServiceg)fCallingTypeg of up to 100% each.

Thus, discovery might bene�t when background knowledge about the domain

texts is exploited for compiling transactions. In the future, we will have to further

investigate the e�ects of di�erent strategies.

Example

For the purpose of illustration, we here give a comprehensive example, which is

based on our actual experiments. We have generated a text corpus by crawling

texts from several WWW providers for telecommunications information (URL:

http://www.TK-news.de/). The corpus describes actual objects, like telecommu-

nication companies, new technologies, telecommunication services, and trends,

such as given in the following example sentences.

(4) a. France Telecom bietet als erster Telekommunikationsdienstleister das

DSL-Netz mit maximaler Uebertragungsgeschwindigkeit.

b. Die Swiss Telekom Beteiligungsgesellschaften erschweren den Fortschritt.

c. Laut interner Information wird France Telecom mit der BCDM AG mer-

gen.

d. Alle Basisanschluesse sind mit Kabel, Telefon und PC-Karte ausgestattet.

Processing the example sentences (4a) and (4b), SMES (Section 2) outputs

dependency relations between the terms, which are indicated in slanted fonts

(and some more). In sentences (4c) and (4d) the heuristic for prepositional

phrase-attachment and the sentence heuristic relate pairs of terms (marked by

slanted fonts), respectively. Thus, four concept pairs { among many others { are

derived with knowledge from the domain lexicon (cf. Table 1).

Table 1. Examples for linguistically related pairs of concepts

Term1 ai;1 Term2 ai;2

DSL-Netz DSLNetz Ueb.geschwindigkeit Uebgeschwindigkeit

Swiss Telekom TKCompany Bet.gesellschaft Bet.gesellschaft

France Telecom TKCompany BCDM AG TKCompany

Basisanschluss Basisanschluss Kabel Kabel

The algorithm for learning generalized association rules (cf. Section 4) uses

our semi-automatically generated domain taxonomy, an excerpt of which is de-

picted in Figure 3, and the concept pairs from above (among many other concept



pairs). In our actual experiments, it discovered a large number of interesting and

important non-taxonomic conceptual relations.

root

area document client.....

city region
private
client

business

client
invoice licence

.....

Figure 3. An example scenario

A few of them are listed in Table 2. Note that in this table we also list a

conceptual pair, viz. (private client, city), that is not presented to the user, but

which is pruned. The reason is that there is an ancestral association rule, viz.

(client, city), with higher con�dence and support measures.

Table 2. Examples of discovered relations

Discovered relation Con�dence Support

(market, tari�) 0.38 0.04

(connection, price) 0.39 0.03

(TKCompany, TKCompany) 0.5 0.1

(client, city) 0.39 0.03

(private client, city) 0.29 0.02

5 Related Work

The objective of our framework is to facilitate ontology engineering from texts

in real-world settings through several information extraction and learning ap-

proaches. Thus, we had to face (i) the discovery of relevant concepts, (ii) their

organization in a taxonomy, and (iii) the non-taxonomic relationsships between

concepts.

In our actual case study, we have employed a three-step approach. We have

exploited some fairly well-known methods for concept discovery and organiza-

tion, such as standard statistics-based approaches for term extraction [18] and

the use of lexico-syntactic patterns on machine-readable dictionaries [8,14].



Based on the concept hierarchy from the �rst two steps, we have set a new

method for the discovery of non-taxonomic relations on top. Regarding this part

of our work, we want to give a more detailed survey of related work.

Most researchers in the area of discovering conceptual relations have \only"

considered the learning of taxonomic relations. To mention but a few, we refer

to some fairly recent work, e.g., by Hahn & Schnattinger [5] and Morin [14]

who used lexico-syntactic patterns with and without background knowledge,

respectively, in order to acquire taxonomic knowledge.

For purposes of natural language processing, several researchers have looked

into the acquisition of verb meaning, subcategorizations of verb frames in partic-

ular. Resnik [16] has done some of the earliest work in this category. His model is

based on the distribution of predicates and their arguments in order to �nd selec-

tional constraints and, hence, to reject semantically illegitimate propositions like

\The number 2 is blue." His approach combines information-theoretic measures

with background knowledge of a hierarchy given by the WordNet taxonomy.

He is able to partially account for the appropriate level of relations within the

taxonomy by trading o� a marginal class probability against a conditional class

probability. He considers the question of �nding appropriate levels of generaliza-

tion within a taxonomy to be very intriguing and concedes that further research

is required on this topic (cf. p. 123f in [16]) .

Faure and Nedellec [3] have presented an interactive machine learning system

called ASIUM, which is able to acquire taxonomic relations and subcategoriza-

tion frames of verbs based on syntactic input. The ASIUM system hierarchically

clusters nouns based on the verbs that they co-occur with and vice versa.

Wiemer-Hastings et al. [24] aim beyond the learning of selectional constraints,

as they report about inferring the meanings of unknown verbs from context.

Using WordNet as background knowledge, their system, Camille, generates hy-

potheses for verb meanings from linguistic and conceptual evidence. A statistical

analysis identi�es relevant syntactic and semantic cues that characterize the se-

mantic meaning of a verb, e.g. a terrorist actor and a human direct object are

both diagnostic for the word \kidnap".

The proposal by Byrd and Ravin [1] comes closest to our own work. They

extract named relations when they �nd particular syntactic patterns, such as an

appositive phrase. They derive unnamed relations from concepts that co-occur

by calculating the measure for mutual information between terms | rather

similar as we do. Eventually, however, it is hard to assess their approach, as

their description is rather high-level and lacks concise de�nitions.

To contrast our approach with the research just cited, we want to mention

that all the verb-centered approaches may miss important conceptual relations

not mediated by verbs. All of the cited approaches except [16] neglect the im-

portance of the appropriate level of abstraction.



6 Conclusion

In this paper we have presented an approach towards mining ontologies from

natural language. We have considered a domain-speci�c dictionary as well doc-

uments taken from the telecommunications domain as relevant resources for the

diÆcult task of ontology learning.

For the future much work remains to be done. First, we need to investigate

what speci�c types of linguistic and heuristic output are best suited to optimize

performance. Maybe chunk parsing does not even help so much, but noun phrase

recognition does, or vice versa. Second, we are planning a study to investigate our

de�ned evaluation and similarity measures precision, recall, and RLA described

in [13] for that human modelers achieve when they are given the same task as our

discovery mechanism. Third, we will have to investigate the inuence of di�erent

transaction de�nitions (cf. Section 4). Fourth, several existing ontologies such as

WordNet [4] and the german counterpart GermaNet [7] have to be integrated as

a core resource into the cyclic approach and mechanisms for pruning ontologies

to the relevant domain have to be developed. Finally, and probably the most

intricate, we want to approach not only the learning of the existence of relations,

but also their names and types.
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