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Abstract

We study the notion of hierarchy in the context of visualizing textual

data and navigating text collections. A formal framework for “hierarchy”

is given by an ultrametric topology. This provides us with a theoret-

ical foundation for concept hierarchy creation. Frequency of occurrence

(terms, texts) data is embedded in a metric space by correspondence anal-

ysis, from which ultrametric properties of the data are explored and ex-

ploited. A major objective is scalable annotation or labeling of concept

maps, for summarizing information and supporting navigation. We exem-

plify our approach using (i) a single text subdivided into successive parts

(for which we provide an interactive demonstrator), and (ii) a collection of

texts, among them television series scripts, providing an important tem-

plate for varied semi-structured text stores. We provide comparisons with

other visualization approaches.

Categories and Subject Descriptors: H.5 (Information interfaces and pre-

sentation), I.5.3 (Clustering), H.5.2 (User interfaces), I.7.2 (Document prepara-

tion), H.3 (Information storage and retrieval)

1 Introduction

1.1 Organization of the Article

In section 1, we review the application domain of visual user interfaces and their

role in information space navigation. We discuss how structuring of summarized

2



information is needed. We review related work. We then discuss the semi-

structured data that is a useful exemplar of various application domains.

In section 2 we discuss background technologies for later work presented

here, illustrating various aspects of hierarchical structure in textual data.

Section 3 covers how we derive a dominance relationship between terms.

In section 4 we present a range of examples, and comparisons with two tag

cloud tools.

1.2 Visual, Interactive User Interfaces for Supporting In-

formation Space Navigation

Since the mid-1990s we built visual interactive maps of bibliographic and database

information at Strasbourg Astronomical Observatory, and some of these, with

references, are available at Murtagh [2006c]. The semi-structured display used

by us was based on the Kohonen self-organizing feature map. A comprehensive

view of the latter can be found at websom.hut.fi [Kohonen et al. 2000].

A more recent development has been tag clouds. McKie [2007] discusses ex-

amples and provides an online system for creating of filmscript term “clouds”.

He discusses similar tools (e.g., TagCrowd, www.tagcrowd.com; Zoomcloud,

zoomclouds.egrupos.net). Similar tag clouds are commonly used to present in-

formation in large data repositories (e.g. flickr, www.flickr.org).

The motivation for such tools is to have (possibly interactive) annotated

maps to support information navigation. Prominent terms are graphically pre-

sented and can be used to carry out a local search. In some cases, the location
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of terms is important, in particular in the case of the Kohonen map. The au-

tomated annotation of such information maps is not easy. Often the basis for

display font size and sometimes even for location on the maps is simply fre-

quency of term occurrence. The work presented in this article aims at taking

more available information into account, leveraging interrelationships in textual

content and thereby semantic content.

Visualization is often an important way to elucidate semantic heterogeneity

for the user. Visual user interfaces for ontological elucidation are discussed in

Murtagh et al. [2003], with examples that include interactive, responsive infor-

mation maps based on the Kohonen self-organizing feature map; and semantic

network graphs. A study is presented in Murtagh et al. [2003] of client-side

visualization of concept hierarchies relating to an economics information space.

The use of “semantic road maps” to support information retrieval goes back to

Doyle [1961]. Motivation, following Murtagh et al. [2003], includes the follow-

ing: (i) Visualization of the semantic structure and content of the data store

allows the user to have some idea before submitting a query as to what type of

outcome is possible. Hence visualization is used to summarize the contents of

the database or data collection (i.e., information space). (ii) The user’s infor-

mation requirements are often fuzzily and ambiguously defined at the outset of

the information search. Hence visualization is used to help the user in his/her

information navigation, by signaling the relationships between concepts. (iii)

Ontology visualization therefore helps the user before the user interacts with

the information space, and during this interaction. It is a natural enough pro-
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gression that the visualization becomes the user interface.

1.3 Ontology

“Ontologies are often equated with taxonomic hierarchies of classes ... but on-

tologies need not be limited to such a form” [Gruber 2001]. Gruber is cited in

Gómez-Pérez et al. [2004] as characterizing an ontology as “an explicit specifi-

cation of a conceptualization”. In Wache et al. [2001], ontologies are motivated

by semantic heterogeneity of distributed data stores. This is also termed data

heterogeneity and is counterposed to structural or schematic heterogeneity. On-

tologies are motivated by Wache et al. [2001] “for the explication of implicit and

hidden knowledge”, as “a possible approach to overcome the problem of seman-

tic heterogeneity”. So, ontologies may help with integration of diverse, but

related, data; or they may help with clarifying or disambiguating distinctions

in the heterogeneous data. Ontologies are likely to be of immediate help in sup-

porting querying. For example, the query model may be based on the ontology

(or ontologies) used.

There is extensive activity on standards and software, relating more to the

above-mentioned schematic rather than semantic heterogeneity, and a useful

survey of this area is Denny [2004]. Denny takes an ontology in a broad-ranging

view as a knowledge-representation scheme.
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1.4 Tools: Linguistic Analysis, Ancillary Databases, Al-

gebraic Structures

Linguistic analysis tools, and ancillary databases, have often been used in on-

tology construction, and we will now briefly review these options.

Much work on text mining avails of statistical analysis (mostly in the form

of frequency of occurrence and cross-tabulation data) and, to a greater or lesser

degree of linguistic analysis. The latter may include relation finding in order

to target verbs and their associated grammatical arguments or terms [Schutz

and Buitelaar 2005]. Linguistic analysis is used for “augmenting” [Gillam et

al. 2005] or providing “semantic enrichment” [Xiaomeng Su and Gulla 2006], or

to be “trimmed and enriched” [Navigli and Velardi 2004]. Linguistic analysis

may go as far as the use of already existing ontologies or semantic nets (im-

plying “semantic enrichment”: [Xiaomeng Su and Gulla 2006]) such as Word-

Net (e.g. [Navigli and Velardi 2004]); or use more direct syntactic information

such as word inclusion in multiple word expressions [Navigli and Velardi 2004].

(Pioneering work on term completion was due to Spärck Jones [1971].) The

syntactic approach, – generalization and equivalence relations (approximated

by “is-a” and clustering, respectively) – is approached by De la Higuera and

Daniel-Vatonne [1996] in terms of programming language semantics.

In section 2.1 below we introduce a new way of quantifying inherent hierar-

chical structure as one type of semantic information. Apart from information

measures, Ahmad et al. [1996] defines a docment “weirdness index” as a simple

coefficient of specialist versus general terminology. A different approach to co-
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hesion analysis has been on the basis of path lengths between terms in semantic

networks such as WordNet, or more generally on the graph of lexical, referen-

tial, or verb links (see [Chan 2004; 2006]). A semantic network also underpins

the work of Tucker and Spärck Jones [2005]. When the graph (i.e., network) is

restricted to dominance relationships, then it is possible that we have a lattice.

A lattice is a partially ordered set (poset) such that every pair of elements has

a least upper bound (see [Davey and Priestley 2002]). The application of lat-

tices to the semantics of, for example, text allows for Formal Concept Analysis

(FCA), [Cimiano et al. 2005].

Term extraction and use of parsers are commonly used for ontology learning:

“The state-of-the-art is mostly to run a part-of-speech tagger over the domain

corpus used for the ontology learning task and then to identify possible terms by

manually constructing ad-hoc patterns ... whereas more advanced approaches

to term extraction for ontology learning build on deeper linguistic analysis ...”

[Buitelaar et al. 2005].

Ahmad and Gillam [2005] develop a semi-automated approach using text

with no markup. Multiword expressions are determined, and frequency of oc-

currence information is used to point to term or phrase importance. A stop

list is used to avoid irrelevant words. Part of speech analysis is not used. A

semantic net is formed to allow development of the ontology elements. Fuzzy

inference is used by Lee et al. [2007].

Abou Assali and Zanghi [2006] use syntactic part of speech tagging to deter-

mine the nouns. These authors retain sufficiently frequent nouns. They apply
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the notion of weak subsumption: if – for the most part – a word is in a text that

another is in, and not vice versa, then this leads to a hierarchical relationship.

Chuang and Chien [2005] assert that multiway trees are appropriate for

concept hierarchies, whereas binary trees are built using hierarchical clustering

algorithms. Hence they modify the latter to provide more appropriate output.

(A formal approach for mapping a binary hierarchical classification tree onto a

multiway hierarchy is described in Murtagh [2007].)

A hierarchical clustering has often been used to represent an ontology. Note

that this is usually not a concept hierarchy. A concept hierarchy is based on

a subsumption relationship between terms, whereas a hierarchical clustering is

an embedded set of clusters of the term set. Later in this article (section 3), we

show a way to derive a concept hierarchy, involving subsumption of terms, from

a hierarchic clustering.

A hierarchic clustering is typically a binary, rooted, terminal labeled, node

ranked tree, and a concept hierarchy is typically a multiway, rooted, terminal

and non-terminal labeled, ranked tree. By starting with the former (binary)

tree representation, we have an extensive theoretical and formal arsenal at our

disposal, to represent the main lines of what we need to do, and to help to avoid

being overly reliant on user parameter-based aggregation of subsystem compo-

nents and tools. As seen later in this work, we start by laying the foundations of

our perspective by basing this on binary trees, and later proceed to the multi-

way tree. An alternative approach can be found in Ganesan et al. [2003], where

similarities or distances on trees are redefined and re-axiomatized for the case
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of multiway trees.

An alternative representation for an ontology is a lattice and Formal Concept

Analysis, already noted, is a methodology for the analysis of such lattices. If

we have a set of documents or texts, I, characterized by an index term set

J , then as Janowitz [2005] shows, hierarchical clustering and FCA are loosely

related. Hierarchical clustering is based on pairwise distances or dissimilarities,

d : I × I → R+ (R+ is the set of non-negative reals). FCA is based on partially

ordered sets (posets) such that there is a dissimilarity d : I × I → 2J (2J is the

power set of the index terms, J). There are thus linkages and also differences

between FCA and the hierarchical clustering approach that we use in this work:

see Murtagh et al. [2007] for a discussion of how and where a hierarchy derived

from an FCA approach differs from one derived from a stepwise hierarchical

clustering algorithm.

Other approaches (rule-based; machine learning approaches, etc.; layered,

engineering, approaches with maintenance management – see Maedche [2006])

are also available. One difficulty with the engineering of such approaches is

that there is an ad hoc understanding of the problem area, and often there is

dependence on somewhat arbitrary threshold and selection criteria that do not

generalize well.

Our approach formalizes the problem area – the information space – in terms

of its local or global topology. Where we do have selection criteria, such user

interaction is at the application goal level.

9



1.5 Semi-Structured Text

Chafe [1979] considers linear versus hierarchical (e.g., at sentence, paragraph,

section, etc. levels) organization of text, in the context of studying narrative in

its role as expressing past experience. Chafe used a 7-minute 16 mm color movie,

with sound but no language, and collected narrative reminiscences of it from

human subjects. Chafe argues in favor of a “flow model”, i.e. a “flow of thought

and the flow of language” which is not particularly interested in structure of

any kind. In our work, based on film or television movie scripts, we have and

avail of given scene boundaries. For Chafe, and others basing their work on a

similar principle such as Hearst [1994], this was not the case and instead they

based their work on the human thinking that lay behind the recorded narrative.

It will be informative and very useful for us to avail instead of the structure

that is provided by a film or television program script.

There are literally thousands of film scripts, including for television pro-

grams, for all genres, available and openly accessible on the web (e.g. IMSDb,

Internet Movie Script Database). A film script is composed of a succession of

scenes, each of which has a header (often in upper case, and indented) indicating

internal or external, day or night, location and other metadata, together with

transition (“cut to:”, “sound cue”) and beginning and end details. The variable

length scene itself contains dialog between characters, and/or action descrip-

tion. Supporting information retrieval of movie scripts is of importance in the

writing and rewriting process. Indeed machine learning algorithms have been

directly applied to scripts themselves to predict later commercial success [Glad-
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well 2006]. Analysis, retrieval and use of scripts provide a paradigmatic case for

medical report handling, and scenario analysis in organization and management.

The scripts may provide a more malleable basis for reshaping and restructuring

content in order to support interactive training and learning environments, as

well as the full gamut of interactive media in entertainment.

For all these reasons the television program scripts, used later, represent

(technically) ideal and (application-wise) important exemplars for us. As we

will see below, we make full use of whatever structure is available to us in such

data.

1.6 Innovation in Our Approach

Our approach is distinguished by the following.

1. It is unsupervised rather than a supervised or learning approach (cf. the

title and theme of [Buitelaar et al. 2005]. We generally succeed in having

our processing pipelines automated and not requiring user parameters.

2. Our approach is statistical in the sense of being based on frequency of oc-

currence or presence/absence characterization of the data; and it is based

on the topology of the information space. This helps in achieving our goal

of a comprehensive and complete processing pipeline, bypassing the need

for an “ontology engineering architecture” as such (cf. [Navigli and Velardi

2004; Velardi et al. 2997]).

3. A Euclidean embedding is often used for filtering (so that the higher
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eigenvalue-ranked axes account for the more important sources of vari-

ation, hence information, in one’s data) and display. Examples include

latent semantic indexing, (metric or non-metric) multidimensional scal-

ing, etc. In our use of correspondence analysis in this article, we avail of a

full dimensionality embedding. Hence we avoid any limitations related to

less than full dimensionality approximation. Our motivation is (i) the data

normalization that is part and parcel of the embedding; and (ii) the ease

with which we use the Euclidean embedded data to induce a hierarchical

clustering.

2 Three Metrics: Chi Squared, Euclidean and

Ultrametric

2.1 Quantifying Hierarchical Structure

We will briefly review work which has led to the results described in this article.

A basic issue for us in the context of finding an ontology is whether or not any

text object or repository document has any hierarchical structure to begin with.

Alternatively we may wish to consider the issue of whether or not a document

has sufficient inherent hierarchical structure to warrant further investigation.

We could approach this problem by fitting a hierarchy, and there are many

algorithms for doing so (such as any hierarchical clustering algorithm; de Soete

[1986] describes a least squares optimal fitting approach).

In Murtagh [2004] we show how we can quantify the extent of hierarchical
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structure in text. In keeping with the standard approach in multivariate data

analysis, a hierarchy is defined (without loss of generality) as a binary, rooted,

sometimes labeled, tree. Such a tree defines an ultrametric topology and, re-

ciprocally, the tree is a representation for the ultrametric space. (Knapp [1988]

uses the term “hierarchical” to mean self-similar.) In Murtagh [2006a, 2006b]

further explorations are described in the assessment of inherent hierarchicity

or ultrametricity in text. We will return to the characterization of ultrametric

spaces in section 3.2 below.

2.2 Euclidean Embedding

In our use of free text, a mapping into a Euclidean space gives us the capability

to define distance in a simple and versatile way. In correspondence analysis

[Murtagh 2005], the texts we are using provide the rows, and the set of terms

used comprise the column set. In the output, Euclidean factor coordinate space,

each text is located as a weighted average of the set of terms; and each term is

located as a weighted average of the set of texts. (This simultaneous display is

sometimes termed a biplot.) So texts and terms are both mapped into the same,

output coordinate space. This can be of use in understanding a text through

its closest terms, or vice versa.

A commonly used methodology for studying a set of texts, or a set of parts

of a text (which is what we will describe below), is to characterize each text with

numbers of terms appearing in the text, for a set of terms. The χ2 distance is

an appropriate weighted Euclidean distance for use with such data [Benzécri
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1979; Murtagh 2005]. Consider texts i and i′ crossed by words j. Let kij be

the number of occurrences of word j in text i. Then, omitting a constant, the

χ2 distance between texts i and i′ is given by
∑

j 1/kj(kij/ki − ki′j/ki′)2. The

weighting term is 1/kj . The weighted Euclidean distance is between the profile

of text i, viz. kij/ki for all j, and the analogous profile of text i′. (Our discussion

is to within a constant because we actually work on frequencies defined from

the numbers of occurrences.)

The relationship between the χ2 distance and mutual information is ex-

plored in Benzécri [1979, Tome 1, pp. 216–218]. There is much formal similarity

between the two: the χ2 distance avails of a quadratic relationship, whereas

mutual information uses the logarithm of a ratio. Benzécri discusses where one

can be effectively substituted for the other. The singular value decomposition

at the heart of correspondence analysis of course rests on the χ2 distance.

Correspondence analysis allows us to project the space of documents (we

could equally well explore the terms in the same projected space) into a Eu-

clidean space. It maps the all-pairs χ2 distance into the corresponding Euclidean

distance.

For a term, we use the (full rank) projections on factors resulting from

correspondence analysis. As noted, this factor space is endowed with the (un-

weighted) Euclidean distance.
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2.3 Example: “Crime Scene Investigation” CSI 1-01 Pilot

As an examplary data set, we use transcripts for the widely-aired CSI, “Crime

Scene Investigation”, television series. The Pilot, 1-01, was originally aired

on CBS on October 6, 2000. Eight seasons’ scripts are available for this, the

original Las Vegas series [TWIZ, 2007]. In the Pilot, there are 50 scenes, with

word counts ranging from 146 words to 676 words. In all there are 9934 words.

There are 1679 unique words, greater than 1 letter in length, with lower case

replacing upper case, and with punctuation ignored. We will use this 1679

unique word set.

The frequency of occurrence data crossing the 50 scenes and 1679 words is

mapped, using correspondence analysis, into a space of inherent dimensionality

49: if n, m are respectively the numbers of rows or scenes, and columns or

words, then the inherent dimensionality is min(n− 1,m− 1); the reason why 1

is subtracted from both is that the cloud of scenes and the cloud of words are

both centered, giving a linear dependence. The origin is the average, expressing

the hypothetical scene, or the hypothetical word, carrying no information.

In Figure 1, the scenes and words are located in the same embedding. The

figure is interpreted in a natural, Euclidean, way, which is not the same as when

we are presented with a frequency of occurrence data array. Defined on the

basis of the frequency of occurrence array, we have the χ2 distance between

scenes and/or words. The output display in Figure 1 is a best planar view of

a space endowed with the Euclidean metric. Both scenes and words have a

“built-in” normalization. The one very important fact to keep in mind is that
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Figure 1: Correspondence analysis principal factor plane of projections of 50

scenes (each represented with an x), and 1679 characterizing words (each rep-

resented with a dot).
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this is a best planar view of what is, in reality, a 49-dimensional space. The

quality of the approximation involved in this is seen in the percentage inertia

explained by these factors. Quite typically for correspondence analysis, the

extent of approximation is weak. This is because less important factors or axes

are “explained by”, or determined by, isolated, very particular, words (which

thereby also determine the information content of particular scenes).

The relationship between scenes and words in Figure 1 is ultimately given

by the dual space relationships [Murtagh 2005]:

Fα(i) = λ
− 1

2
α

∑
j∈J

f i
jGα(j) for α = 1, 2, . . . N ; i ∈ I

Gα(j) = λ
− 1

2
α

∑
i∈I

f j
i Fα(i) for α = 1, 2, . . . N ; j ∈ J

These are termed the transition formulas. The coordinate of element i ∈ I (I is

the set of scenes) is the barycenter (center of gravity) of the coordinates of the

elements j ∈ J (J is the set of words), with associated masses of value given by

the coordinates of f i
j of the profile f i

J . (The scene-normalized scene vector of

word occurrences is denoted f i
j , and the word-normalized word vector of scene

occurrences is denoted f j
i .) The αth eigenvalue is λα, and there are N axes in

all. The transition formulas are all to within the λ
− 1

2
α constant. F and G are

the factor projections or coordinates.

The barycenter formulas are very important. From them, we know that

a scene is located at a weighted average of all words, given the frequency of

occurence properties of words for that scene. Similarly, we know that a word
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is located at a weighted average of all scenes, given the frequency of occurence

properties of scenes for that word.

In practice, Figure 1 presents a very useful view of relationships in our scenes

× words data. But it is an approximation to the full dimensional reality. There-

fore we prefer to use the full dimensionality Euclidean representation furnished

by the factor space.

2.4 Selecting the Most Pertinent Terms

Presenting a result with around 1700 terms (cf. Figure 1) does not lend itself

to convenient display. We ask therefore what the most useful – perhaps the

most discriminating terms – are. In correspondence analysis both texts and

their characterizing terms are projected into the same factor space. So, from

the factor coordinates, we can easily find the closest term(s) to a given text.

We do this for each of the 50 scenes and find – in the full dimensionality factor

space, and so with no approximation involved – the following for the 50 scenes

in succession:

“royce” “soon” “coughs” “tape” “building” “makes” “gasps” “shift” “sign”

“forced” “rushes” “city” “feet” “body” “hotel” “ah” “trying” “or” “business”

“shoes” “screaming” “swab” “gun” “were” “rattle” “print” “really” “brass”

“remember” “judge” “any” “latex” “skin” “both” “herself” “believe” “hospi-

tal” “dress” “finger” “minute” “deep” “statement” “minutes” “shh” “match”

“second” “watching” “enters” “ring” “full”
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Among these terms, each individually characterizing a scene, in succession,

we note the following. “Royce” is a personal name. Terms like “Ah” and

“Shh” are present, and reflective of the scenes. We experimented with other

alternatives, such as selecting the more important scenes – which, from our

procedure, leads also to the more important words – on the basis of totalled

high frequency of occurrence. This did not lead to a more attractive word set

(e.g. nouns or verbs). We decided to eschew manual selection of terms, in view

of our desire to generalize our results. Finally, we decided to limit ourselves to

just one nearest neighbor word, for each scene, on the grounds of facilitating

interpretation. However nothing restricts the consideration of, for example, 3

or 4 nearest neighbors.

In section 4.2 below, in all cases, we use the first nearest neighbor word of

each of the scenes.

2.5 Hierarchical Clustering of Data Sequence

The correspondence analysis, discussed above, gives us an output Euclidean

representation, which in turn facilitates defining distances between scenes and

between words. The scenes give us a time-varying signal, or time series. Using

the full-dimensionality factor space coordinates, we look at Euclidean distance

between successive scenes. Equally valid is how we can use Euclidean distance

between the most scene-characterizing words, in sequence. In using full dimen-

sionality, there is no loss of information. Rather, we are using an alternative

but equivalent view of the data, relative to the input data set.

19



In treating the television program script as a linear document in this way, we

note the interesting counter-posing of hierarchical to linear – the former being

the hierarchy ranging over word, sentence or line, paragraph, and so on. This

is discussed in Hearst [1994] and extensively in Chafe [1979]. Perhaps counter-

intuitively our linear sequence of script scenes will actually be hierarchically

clustered!

We require that the hierarchic clustering should be strictly on the basis

of agglomerating or merging clusters that are in (scene ordered) sequence. In

accordance with the timeline of scenes (i.e. from 1 to 50 in the case of this

particular CSI program introduced in section 2.3), we impose a temporal or

sequence-related adjacency constraint on the agglomerative clustering.

The sequence-related adjacency requirement can be viewed from a different

perspective. The issue to be considered is whether an agglomerative clustering

method would give rise to an inversion, i.e., a later agglomeration in the sequence

of agglomerations would have an associated criterion value that is less than

the previous criterion value. It is not hard to appreciate that our desire to

have gradations of distance represented by the dendrogram would be negated,

and severely so, by such absence of the monotonicity of criterion value, which

amounts to a contradiction in interpretation of the dendrogram.

It is shown in Murtagh [1985] that just two approaches are feasible. What

is involved here is sketched out as follows. Contiguity-constrained single link

hierarchical clustering is simultaneously hierarchical clustering on the spanning

tree graph. This is easy to implement (inefficiently): just fix an infinite (or very
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large) distance between non-contiguous pairs and proceed to use single link hi-

erarchical clustering. The complete link method, with the constraint that at

least one member of each of the two clusters to be agglomerated be continu-

ous, is guaranteed not to give rise to inversions. The O(n2) time, O(n2) space

algorithm for the complete link method, based on the nearest neighbor chain

[Murtagh 1985], is easily modified to include an additional testing of contiguity

whenever a linkage in the nearest neighbor chain is created. In this work we use

the contiguity-constrained (or sequence-respecting) complete link agglomerative

criterion, in view of the well-balanced hierarchies typically produced [Murtagh

1984b].

Figure 2 shows the very similar hierarchies yielded by the best-characterizing

sequence of 50 words, and the sequence of 50 scenes. We are more interested

in inferring an ontology from the former. However we note the inherently very

close relationship with the latter.

We will return later to the practical use of such a hierarchy as is shown in

Figure 2.
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Figure 2: Hierarchical clustering of (top) succession of 50 scene-characterizing

words – see subsection 2.4; and (bottom) succession of 50 scenes. In both cases,

the complete link agglomerative clustering criterion rigorously respects the given

sequence. Since, by design, there is a very good one-to-one mapping of the

cloud of 50 words, and the cloud of 50 scenes, both in the same 49-dimensional

Euclidean embedding, it follows that the hierarchies are similar.
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3 From Hierarchical Clustering to a Hierarchy

of Concepts

3.1 A Formal Approach: Displaying a Hierarchical Clus-

tering as an Oriented Tree

We have noted in the Introduction how a hierarchical clustering may be the

starting point for creating a concept hierarchy, but the two representations

differ. In this section we show how we can move from an embedded set of

clusters, to an oriented tree. Orientation in the latter case aims at expressing

subsumption.

Consider the dendrogram shown in Figure 3, which represents an embedded

set of clusters relating to the 8 terms.

We took Aristotle’s Categories, which consisted of 14,483 individual words.

We broke the text into 24 files, in order to base the textual analysis on the

sequential properties of the argument developed. In these 24 files there were

1269 unique words. We selected 66 nouns of particular interest. A sample

(with frequencies of occurrence): man (104), contrary (72), same (71), subject

(60), substance (58), ... No stemming or other preprocessing was applied. For

the hierarchical clustering, we further restricted the set of nouns to just 8.

(These will be seen in the figures to be discussed below.) The data array was

doubled [Murtagh 2005] to produce an 8 × 48 array, which with removing 0-

valued text segments (since, in one text segment, none of our selected 8 nouns
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Figure 3: Hierarchical clustering of 8 terms. Data on which this was based:

frequencies of occurrence of 66 nouns in 24 successive, non-overlapping segments

of Aristotle’s Categories.
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appeared) gave an 8 × 46 array, thereby enforcing equal weighting of (equal

masses for) the nouns used. The spaces of the 8 nouns, and of the 23 text

segments (together with the complements of the 23 text segments, on account of

the data doubling) are characterized at the start of the correspondence analysis

in terms of their frequencies of occurrence, on which the χ2 metric is used. The

correspondence analysis then “euclideanizes” both nouns and text segments. We

used the 7-dimensional (corresponding to the number of non-zero eigenvalues

found) Euclidean embedding, furnished by the projections onto the factors.

A hierarchical clustering of the 8 nouns, characterized by their 7-dimensional

(Euclidean) factor projections, was carried out: Figure 3. The Ward minimum

variance agglomerative criterion was used, with equal weighting of the 8 nouns.

Figure 4 shows a canonical representation of the dendrogram in Figure 3.

Both trees are isomorphic to one another. Figure 4 is shown such that the

sequence of agglomerations is portrayed from left to right (and of course from

bottom to top). We say that Figure 4 is a canonical representation of the

dendrogram, implying that Figure 3 is not in canonical form. In Figure 5, the

canonical representation has its non-terminal nodes labeled.

Next, Figure 6 shows a superimposed oriented binary rooted tree, on n− 1

nodes, which is isomorphic to the dendrogram on n terminal nodes. This ori-

ented binary tree is an inorder traversal of the dendrogram. Sibson’s [1973]

“packed representation” of a dendrogram uses just such an oriented binary

rooted tree, in order to define a permutation representation of the dendrogram.

From our example, the packed representation permutation can be read off as

25



(13625748): for any terminal node indexed by i, with the exception of the right-

most which will always be n, define p(i) as the rank at which the terminal node

is first united with some terminal node to its right. Discussion of combinato-

rial properties of dendrograms, as related to such oriented binary rooted trees,

and associated down-up and up-down permutations, can be found in Murtagh

[1984a].

Finally, in Figure 7, we “promote” terminal node labels to the nodes of

the oriented tree. We will use exactly the procedure used above for defining a

permutation representation of the oriented tree. First the left terminal label is

promoted to its non-terminal node. Next, the right terminal label is promoted

as far up the tree as is necessary in order to find an unlabeled non-terminal

node. This procedure is carried out for all non-terminal labels, working in

sequence from left to right (i.e., consistent with our canonical representation

of the dendrogram). The rightmost label is not shown: it is at an arbitrary

location in the upper right hand side, with a tree arc oriented towards the top

non-terminal node of the dendrogram, now labeled as “motion”.

In this section, we have specified a consistent procedure for labeling the nodes

of an oriented tree, starting from the labels associated with the terminal nodes

of a dendrogram. We start therefore with embedded clusters, and end up with

terms and directed links between these terms. There is some non-uniqueness:

any two labels associated with terminal nodes that are left and right child nodes

of one non-terminal node can be interchanged. This clearly leads to a different

label promotion outcome.
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Figure 4: Dendrogram on 8 terms, isomorphic to the previous figure, Figure

3, but now with successively later agglomerations always represented by right

child node. Apart from the labels of the initial pairwise agglomerations, this

is otherwise a unique representation of the dendrogram (hence: “existence”

and “object” can be interchanged; so can “disposition” and “fact”; and finally

“name” and “definition”). In the discussion we refer to this representation, with

later agglomerations always parked to the right, as our canonical representation

of the dendrogram.
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Figure 5: Dendrogram on 8 terms, as previous figure, Figure 4, with non-

terminal nodes numbered in sequence. These will form the nodes of the ori-

ented binary tree. We may consider one further node for completeness, 8 or ∞,

located at an arbitrary location in the upper right.

28



0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

ex
is

te
nc

e

ob
je

ct

po
si

tio
n

di
sp

os
iti

on fa
ct

m
ot

io
n

na
m

e

de
fin

iti
on

Figure 6: Oriented binary tree is superimposed on the dendrogram. The node

at the arbitrary upper right location is not shown. The oriented binary tree

defines an inorder or depth-first tree traversal.
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Figure 7: The oriented binary tree with labeled nodes, using the procedure

discussed in the text. The label “definition” is not shown and is to be located

in the upper right, with an oriented tree arc directed at “motion”.
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Our promotion procedure was motivated by the permutation representation

of an oriented binary tree, as described above. Here too we do not claim unique-

ness of permutation representation. But we do claim optimality in the sense of

parsimony, and well-definedness.

In the case of a multiway tree with very few distinct levels, the promotion

procedure becomes very simple, but continues to be non-unique.

3.2 A New Approach to Deriving a Concept Hierarchy

from a Dendrogram

In the previous subsection, we discussed an algorithm which takes a hierarchical

clustering, and hence a dendrogram, into an inorder tree traversal, and hence a

permutation of the set of terms used. We now look more closely at implementing

this in practice.

The triangle properties between triplets of points, or data objects, are fun-

damental to ultrametricity and hence to tree representation [Murtagh 2004]. A

dendrogram, representing a hierarchical clustering, allows us to read off, for all

triplets of points, either (i) isosceles triangles, with small base, or (ii) equilat-

eral triangles, and (iii) no other triangle configuration. The reason for the last

condition is simply that non-isosceles, or isosceles with large base, triangles are

incompatible with the ultrametric, or tree, metric.

We will leave aside for the present the equilateral triangle case. Firstly, it

implies that all 3 points are ex aequo in the same cluster. Secondly, therefore

we will treat them altogether as a concept cluster. Thirdly, the equilateral case
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does not arise in the example we will now explore.

In Figure 8, cluster number 3 indicates the following isosceles triangle with

small base: ((existence, object) position). Our notation is: ((x, y) z), such

that triplet x, y, z has small base x, y, and the side lengths x, z and y, z are

equal. This is necessarily implied by relationships represented in Figure 8. So,

motivated by this triangle view of the cluster number 3 part of the dendrogram

we will promote “position” to the cluster number 3 node.

Similarly we will promote “motion” to the cluster number 5 node.

Note the consistency of our perspective on the cluster number 3 and 5 nodes

relative to how the associated terms here form an isosceles triangle with small

base.

We will straight away generalize this definition. In any case of a node in

the form of nodes 3 or 5, where we have a 2-term left subtree, and a 1-term

right subtree, where left and right are necessarily labeled in this way given the

canonical representation of the dendrogram, then: the left subtree is dominated

by the right subtree.

We will next look at cluster number 6 (remaining with Figure 8). As always

for such trees, the node corresponding to this cluster has two subtrees, one

to the left (here: 3) and one to the right (here: 5). Since our dendrogram

is in canonical form, any such node has a subtree with smallest non-terminal

node level to the left; and the subtree which was more recently formed in the

sequence of agglomerations to the right. Based on either or both of these criteria

which serve to define what are the left and right subtrees we define the ordering
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Figure 8: Dendrogram as shown in Figures 4 and 5, with clusters indicated by

ellipses. Shown here are ellipses covering the clusters at nodes 7, 6, 5, and 3.
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relationship: the left subtree is dominated by the right subtree.

Figure 9 summarizes the concept relations that we can derive in a similar

way from any dendrogram.

4 Applications

4.1 Successive Text Segments

In this section we present a demonstrator, based on successive text segments of

a given text.

Figure 10 indicates how the concept relations, shown in Figure 9, are to be

used.

Firstly the term set is summarized, using our selection of terms. Scaling to

large data sets is addressed in this way.

Secondly, in our interactive implementation (web address:

thames.cs.rhul.ac.uk/∼dimitri/textmap), we allow the terms shown to contin-

ually move in a limited way, to get around the occlusion problem, and we also

allow magnification of the display area for this same reason.

Thirdly, terms other than those shown are highlighted when a cursor is

passed over them.

Next, double clicking on any term gives a ranked list of text segment names,

ordered by frequency of occurrence by this term. Clicking on the text segment

gives the actual text at the bottom of the display area.
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name, definition

motion

disposition, fact

position

existence, object

Figure 9: Concept relationships, ordered by dominance, derived from the den-

drogram in Figure 8.
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Figure 10: The relationships displayed in Figure 9 are shown in decreasing size

(and in rainbow colors, from red), with other terms (in all, 66) displayed with a

dash, and all text segments (in all, 24) represented by an asterisk. The principal

factor plane of a correspondence analysis (based on the 24 text segments × 66

terms frequencies of occurence) output is used.
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4.2 Television Transcripts

We now return to the use of this principle of cluster dominance applied to the

word dendrogram shown in Figure 2. This is from the CSI 1-01 (program 1 in

series 1) script. We find the succession of hierarchically ordered clusters, for

just the top part of the dendrogram (to facilitate interpretation) – stopping at

the partition with 5 clusters – to be:

Dominant cluster:

“makes” “gasps” “shift” “sign” “forced” “rushes” “city” “feet” “body” “hotel”

“ah” “trying” “or” “business” “shoes” “screaming” “swab” “gun” “were” “rat-

tle” “print” “really” “brass” “remember” “judge” “any” “latex” “skin” “both”

“herself” “believe” “hospital” “dress” “finger” “minute” “deep” “statement”

Next, ex aequo, are the clusters:

“minutes”

and:

“shh” “match” “second” “watching” “enters” “ring” “full”

Finally, ex aequo, are the following two clusters:

“royce” “soon” “coughs” “tape”

and:

“building”

We started with terms that most closely expressed and characterized the

scenes, and indeed that discriminated between the scenes. Using a hierarchical
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Figure 11: A scriptcloud, showing 64 tags, based on frequent words retained fol-

lowing application of a stoplist. Produced by Scriptcloud, www.scriptcloud.com

clustering that is constrained by the temporal or linear ordering of scenes, we

derived a structuring of the words. All aspects of this are based on a Euclidean

embedding, which also directly addresses the normalization of the original sta-

tistical (i.e. frequency of occurrence) data, both in relation to words and in

relation to scenes. Furthermore all aspects of what we have done is automated

and does not require any user setting of thresholds or manual selections.

The tag clouds of Figures 11 and 12 use frequency information related to

work occurrence, and order words alphabetically. There is nothing in such tag

clouds that takes into account the sequential order of the original text. The

number of words is set by the user.
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Figure 12: A tag cloud, showing 50 tags, with stemming applied and very fre-

quent words ignored. Word frequencies are also shown. Produced by TagCrowd,

www.tagcrowd.com
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Figure 13: Our tag cloud, where each word is a best characterization of a scene.

The sequence of words corresponds to the sequences of scenes (so the number of

words displayed equals the number of scenes). The word font size is proportional

to dominance in the hierarchy. Shown are, from top to bottom, three television

program scripts.
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Our tag cloud in Figure 13 orders words by scene, since the words are –

in the sense described in section 2.4 – the best characterizations of the scenes.

Thus the most important structuring of the original text, viz. the sequence of

scenes, is respected by this output display. The number of words is the same

as the number of scenes. We used just the top part of the hierarchy, since we

wanted a small number of discrete font sizes to represent groups of words. The

number of such groups of words was set as 7 in all cases of analysis of CSI

data. (We experimented with more and with less, and present here the case of

7 clusters.) For m words, this corresponds to cutting the dendrogram at level

m = 7. The 7 successive clusters can be read off, using font size. Our tag cloud,

through font size, takes into account dominance as defined by the hierarchical

clustering. This is used here to indicate how some terms are to be taken as at

a higher level relative to others.

Figure 13 also displays programs two and three of the first series of CSI.

Whereas the first of these progarms has 50 scenes and 1679 unique words; the

second program has 37 scenes and 1343 words; and the third program has 38

scenes and 1413 words.

The dominance relationship, represented as font size, is approximate, for

display convenience. Font sizes (integers between 1 and 7 in deprecated HTML)

below a default 3 are uncomfortably small, and at 7 too large, so we use a range

between 2 and 6, ignoring mapping onto the same value.

To compare these results with other program scripts, we can avail of other

data available at TWIZ [2007]. (Seasons 1 through 4 of CSI have each 23
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programs; season 5 has 25 programs; seasons 6 and 7 have 24 programs. Season

8 scripts are listed by name only at the time of writing.) From season 4 onwards,

the seasons are distinguished by their usual descriptive metadata, but not by

a “Scene number” label: since this makes reproducibility of our results a little

complicated, we will use some further scripts from the third season. We use the

following:

• Third series, 21st program, “Forever”, originally aired on CBS on 1 May

2003, 39 scenes. (In all, 1584 unique words were used.)

• Third series, 22nd program, “Play with Fire”, originally aired on CBS on

8 May 2003, 40 scenes. (In all, 1579 words were used.)

• Third series, 23rd and last program of the series, “Inside the Box”, orig-

inally aired on CBS on 15 May 2003, 49 scenes. (In all, 1445 words were

used.)

Figure 14 shows the resulting tag clouds. Some remarks on this figure follow.

“NV” (CSI322) is part of a much used identifier of personages in a Nevada

Correctional Facility in scene 22. Also in CSI322, our punctuation handling has

left “doesn” and stripped the remainder.

In these visualizations we see important words; the sequence of important

words accompanying the sequence of scenes; sequence-respecting clusters of

words; dominance relationships between words; both a view of the temporal

and linear text being analyzed, and also various aspects of the hierarchical

structure of the text. Properties such as these, seen in the display, can be used
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Figure 14: Tag clouds for programs (episodes) 21, 22 and 23 – the final ones –

in CSI Series 3. See Figure 13 for other details.
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to distinguish one episode (program) from another.

One of the most appealing aspects of our approach is that all phases of the

processing are automated, and there are no user-set parameters or other user

intervention required.

We checked that the pertinent words found to characterize each scene were

unique. This was always the case. If the same word were found to be closest

to two scenes we could of course use any such multiple occurrences of words. If

separated in the timeline or sequence of words, then they would of necessity be

separated also in the dendrogram.

5 Conclusions

With reference to Chafe [1979] we used the sequence of text segments represent-

ing scenes in the script (or the segments derived from the Aristotle text), and

we also used internal hierarchical structure. Sequence, clustering, hierarchy are

all presented comfortably and clearly in our tag cloud display.

Computationally, most of the processing is of linear time. The contiguity-

constrained hierarchical clustering, for convenience in implementation, used a

quadratic time algorithm. Using a nearest neighbor chain algorithm, and storage

and dynamic updating of the pairwise dissimilarities, we can envisage a linear

time algorithm, benefiting from the total order of the sequence of agglomerands.

We conclude that our analysis pipeline has excellent scalablity properties.

Our approach is automated, without recourse to user parameters, or user
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choice of chained tasks. A framework enveloping input data and delivered (po-

tentially interactive and responsive) display is provided by mappings between

χ2 and Euclidean metrics, and ultrametric topologies.

We associate closely both local hierarchic structure in the data, expressed

via ultrametric or strong triangular inequality properties, and global, fitted

hierarchical structure. Reasonable strength of the former properties justify the

latter. We have also clearly formulated and proposed a solution for mapping a

hierarchy from an object set I, as furnished by a hierarchical clustering, to a

concept set furnished by a subset of the power set of I, 2I .

Our global objective [Murtagh et al. 2003] is to support self-description of

data as a basis for visually-based interactive and responsive querying of, retrieval

from, and navigation through, data and information stores. The focus of this

article has been on the building of ontologies, to aid operation and deployment

of, in this sense, active information.
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WACHE, H., VÖGELE, T., VISSER, U., STUCKENSCHMIDT, H., SCHUS-
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